Résumé

Walter E. Fischer-Schlemmt and Eberhard Moser: "Some Investigations on a Potato-Digger with Two Parallel, Counter-swinging Screens."

Satisfactory results were obtained from a potato-digger with swinging screens operating on an easily-screened, sandy, weed-free soil. The digger was built by the Agricultural Engineering Institute. The dimensions of the screen did not prove to be satisfactory when the digger was operating on other types of soils. With the screen oscillating through an arc of 10° at a frequency of 5 cycles and an amplitude of 50 mm and the digger moving forward at speeds ranging from 1,5 km p h to 2.7 km p h (.94 m p h to 1.69 m p h), excellent results were obtained. Tractive power requirements are considerably reduced when the oscillating share is arranged so as to work opposite to the fixed share. The increase in power requirements with such an arrangement of shares is small and is compensated by the saving in power resulting from the reduction in slip of the tractor wheels. An increase in the speed of the digger over the ground is to be desired from the point of greater efficiency. However, the stability and output of the machine render this impossible.

Although the results obtained from these investigations have only a limited field of application at the present time, nevertheless, they have in them many suggestions and ideas for the development of future potato diggers with swinging of oscillating screens.

Walter E. Fischer-Schlemm† et Eberhard Moser: Recherches sur les arracheuses de pommes de terre à deux grilles disposées dans un plan parallèle et oscillant l'une contre l'autre.

L'arracheuse de pommes de terre à grilles oscillantes un rang construite dans l'Insitut pour la Technique Agricole, donne un travail satisfaisant sur des terres sableuses facilement tamisées et exemptes de mauvaises herbes. Pour un travail sur d'autres terres, les dimensions des grilles ont été insu/fisantes. On a pu obtenir des rendements optimum et des efforts de traction minimum dans les conditions suivantes: angle d'oscillation de 10° , fréquence de 5 Hz, amplitude de 50 mm et vitesse de déplacement de 1,5 à 2,7 km/h. En employant des grilles oscillantes au lieu de grilles fixes, on peut abaisser considérablement la puissance de traction nécessaire. Cependant la puissance totale requise est plus élevée. Le surplus de puissance est cependant minime et est compensé par l'économie de la puissance absorbée par le glissement des roues de tracteur. Une augmentation de la vitesse de déplacement sernit nécessaire si l'on veut travailler dans des conditions rentables. Ceci n'est pas possible en considération de le résistance mécanique de la machine et de la puissance requise.

Bien que les résultats de ces recherches n'aient qu'une signification générale limitée, ils sont cependant susceptibles d'inviter à d'autres études d'arracheuses de pommes de terre à grilles oscillantes.

Walter E. Fischer-Schlemm† y Eberhard Moser: «Ensayos con una arrancadora de patatas con dos cribas paralelas, de oscilación opuesta.»

Con la arrancadora de patatas de criba oscilante de una hilera construida en el Instituto Técnico de Agricultura, de consiguen resultados satisfactorios en terreno arenoso, de estructura que permita el empleo de cribas y que estén libres de mala hierba. En terrenos de otra clase no bastan las dimensiones empleadas de la criba. Los resultados más favorables y los esfuerzos de tracción más reducidos han podido conseguirse con un úngulo de oscilación de 10°, una frecuencia de 5 c/s, amplitud de 50 mm y con velocidades de marcha de 1,5 a 2,7 km/h. El esfuerzo de tracción se reduce bastante, empleando una reja oscilante en vez de una reja fija, siendo en cambio el esfuerzo total más elevado. Sin emburgo, la diferencia es insignificante, quedando compensada además por el ahorro del esfuerzo de resbalamiento perdido en las ruedas del tractor. Para aumentar la racionalidad del trabajo, sería necesario un aumento de la velocidad de murcha, lo que resultaría imposible con respecto a la resistencia de la máquina y la potencia necesaria.

Si bien las investigaciones han dado resultados de una importancia muy limitada, pueden dar ciertas sugerencias para el desarrollo de arrancadoras con cribas oscilantes.

Ernst Mewes:

Berechnung der Druckverteilung an Stroh- und Heupressen

Institut für landtechnische Grundlagenforschung, Braunschweig-Völkenrode

In verschiedenen früheren Untersuchungen $[1 \div 7]$ wurden die zu den einzelnen Raumgewichten des Preßgutes Stroh, Heu und anderen Gütern gehörenden Kolbendrücke festgestellt. In den Strangpressen können die Raumgewichte der Ballen durch verschiedene Einstellungen des Preßkanals geändert werden. Es ergeben sich aber für eine Einstellung auch ganz verschiedene Ballenraumgewichte, je nach der Feuchtigkeit des Preßgutes.

Nun sollten in Abhängigkeit von verschiedenen erfaßten Materialkonstanten die Drücke für verschiedene Preßkanäle und Ballenauswurfleitungen bei den jeweiligen Einstellungen vorausberechnet werden können. ALFEROW hat in einer Arbeit [8] entsprechende Rechnungen wiedergegeben. Seine Ergebnisse stimmen mit von ihm angegebenen experimentellen Ergebnissen einigermaßen überein. Leider ist, wie im folgenden Abschnitt gezeigt wird, im den Zahlenrechnungen in [8] ein Dezimalfchler enthalten, nach dessen Beseitigung die Ergebnisse dieser theoretischen Rechnungen nicht mehr mit den experimentellen in Übereinstimmung zu bringen sind.

ALFEROW hat die für die Zusammenhänge zwischen Formänderungen und Spannungen geltenden Gesetzmäßigkeiten eingeführt, die unter der Voraussetzung der Gültigkeit des HOOKEschen Gesetzes stimmen. Dabei sind für das Material überall im Kanal einheitliche Werte für den Elastizitätsmodul und für die POISSONSche Querausdehnungszahl eingesetzt. Es liegt den Rechnungen von ALFEROW die Voraussetzung zugrunde, daß auch für strohartige Materialien die Spannungen den Formänderungen proportional sind. Plastische Eigenschaften des Materials wurden nicht erwähnt. Die Abweichungen der Wirklichkeit sind demgegenüber sehr groß. Nachdem im folgenden dann die Gesetzmäßigkeiten beim Pressen von Stroh, Heu und anderen Gütern angeführt sind, werden in einem späteren Abschnitt entsprechende nichtlineare Deformationsgesetze verwendet, wofür die Drücke in Abhängigkeit von den Verengungen des Preßkanals mit den Materialbeiwerten (u. a. den Reibungszahlen) errechnet worden. Der Vergleich mit den vorhandenen Meßergebnissen stimmt bei dicsen nichtlincaren Rechnungen viel besser. Das gilt sogar für einfache Näherungen, die vor den ausführlichen nichtlinearen Rechnungen gebracht werden.

Bezeichnungen

a	Höhe des Preßkanals am Anfang
a_m	mittlere Höhe des Preßkanals (Gl. 11)
α,	örtliche Höhe des Preßkanals (Bild 1)
b	Breite des Preßkanals
с	Konstante in (17, 18)
C.	Konstante des Preßguts (22)
d	Konstante des Preßguts (27, 31)
[, g, h, j]	(mit Klammern dahinter) Funktionsausdrücke
k	(100)
l	jeweilige Höhe des Preßraums im Preßtopf
l	Länge des Preßkanals
l_{a}	Ansgangslänge des Gutes (34-36)
l _u	Gesamthöhe des Preßtopfes
m	Konstante des Preßgutes (17 ff.)
p_x, p_y, p_z	Drücke in den Richtungen x, y, z (Bild 1)
p_x^*	(24)
p_c	(19)
p_k	(23)
p_c	Längsdruck am Ende des Kanals
p_o	Druck auf den Kolben (Höchstdruck)
po*	(20)
x	Koordinate in Preßrichtung
y	Koordinate in der Richtung von a
z	Koordinate in der Richtung von b
A, B, C, D,	Konstante in den Differentialgleichungen bzw. Lö-
F, G, H	sungen für den Druckverlauf
A_0	(74 ff.)
B_1, B_2	(109, 115,)

- E Elastizitätsmodul
- α Verengungswinkel am Preßkanal (Bild 1)
- γ (örtliches) Raumgewicht des Preßguts
- γ_m mittleres Raumgewicht im Preßtopf
- γ_u Ausgangsraumgewicht des Preßgutes (unverdichtet)
- ε Dehnung (Zusammendrückung)
- μ Reibungszahl des Preßguts an der Preßkammerwandung
- v (Poissonsche) Querzahl des Preßgutes

Theoretischer Rechnungsversuch mit linearem Elastizitätsgesetz

Zunächst worden Rechnungen im Anschluß an russische Untersuchungen [3; 8] angestellt. Die Breite des Preßkanals (Bild 1) ist konstant gleich b. Die Höhe ist am Anfang gleich a und nimmt geradlinig ab, wobei der (kleine) Winkel zwischen Deckel und Unterseite gleich α ist. Die Länge des sich so verengenden Preßkanals ist l. Die laufende Koordinate in der Längsrichtung heißt x, die Y-Achse geht nach oben, die Z-Achse zur Seite. Dementsprechend unterscheiden wir in jedem Querschnitt des Kanals zwischen den 3 Druckwerten p_x , p_y und p_i . Angenommen ist, daß die Querschnitte im Preßgut stets eben bleiben (s. [6], vorletzter Absatz).

Die Zusammendrückung in der y-Richtung ist für einen Querschnitt an der Stelle x

$$\varepsilon_y = \frac{\alpha x}{a}$$
 (1)

Mit einem Elastizitätsmodul E und einer Poissonschen Querausdehnungszahl ν ergibt sich dann nach den Lehren der Elastizitätslehre für ein als homogen und isotrop angenommenes Material

$$p_{\nu} = E \epsilon_{\nu} + \nu (p_{x} + p_{z}), \qquad (2)$$

$$p_{z} = -\nu (p_{z} + p_{\nu}). \qquad (3)$$

Für p_x wird ein entsprechender Ansatz jetzt nicht eingeführt, da damit nur die unbekannten Längsdehnungen des Preßmaterials Eingang finden. Aus obigen Gleichungen erhalten wir gemäß ALFEROW [8]:

$$p_{\nu} = \frac{E \, \alpha x}{(1 - \nu^2)a} + \frac{\nu}{1 - \nu} \, p_z, \qquad (4)$$

$$p_{z} = \frac{\nu E \, \alpha x}{(1 - \nu^{2})a} + \frac{\nu}{1 - \nu} \, p_{x}.$$
 (5)

Die von ALFEROW [8] an einer Strohscheibe gemachten Gleichgewichtsansätze sind hier für den Fall aufgestellt worden, daß nur die eine Scite (der Deckel) um den Winkel α gegen die Kanallängsachse geneigt ist (Bild 2). Die örtliche Höhe an der Stelle x ist für kleine α :

$$a_x = a - \alpha x. \tag{6}$$

Für die andere Seite der Scheibe ergibt sich die Höhe

$$a_x^{\prime\prime} = a_x - \alpha \, dx,\tag{7}$$

während in der Mitte

$$a'_x = a_x - \frac{1}{2} \alpha \, dx \tag{8}$$

ist. Bei ALFEROW [8] wird dieser Unterschied zwischen a_x und $a_{x'}$ nicht in Betracht gezogen. Unter Verwendung des Reibungsbeiwerts μ wird aus einem Gleichgewichtsansatz für kleine Winkel α erhalten:

$$\frac{dp_{x}}{dx} + \frac{(\alpha + 2\mu)p_{y}}{a_{x}} + \frac{2\mu p_{z}}{b} = 0, \qquad (9)$$

folglich

$$\frac{dp_x}{dx} + \frac{(\alpha + 2\mu) E \alpha x}{(1 - \nu^2)a(a - \alpha x)} + \frac{(\alpha + 2\mu)\nu p_x}{(1 - \nu)(a - \alpha x)} + \frac{2\mu \nu E \alpha x}{(1 - \nu^2)ab} + \frac{2\mu \nu p_x}{(1 - \nu)b} = 0.$$
(10)

ALFEROW [8] hat eine Vereinfachung vorgenommen, indem er für a_x einen konstanten Wert einsetzt. Mit

l

$$a_m = a - \alpha \frac{l}{2} \tag{11}$$

ist ungefähr

$$\frac{dp_x}{dx} + A p_x + B x = 0, \qquad (12)$$

Bild 1: Preßkanal (ohne Zu- und Abführung gezeichnet)

$$A = \frac{\nu}{1-\nu} \left(\frac{\alpha+2\mu}{a_m} + \frac{2\mu}{b} \right) \approx \frac{2\mu\nu}{1-\nu} \left(\frac{1}{a_m} + \frac{1}{b} \right)$$
(13)
und

$$B = \frac{E \alpha}{(1-\nu^2)a} \left(\frac{\alpha+2\mu}{a_m} + \frac{2 \mu \nu}{b}\right) \approx \frac{2 \mu E \alpha}{(1-\nu^2)a} \left(\frac{1}{a_m} + \frac{\nu}{b}\right).$$
(14)

Bei der Lösung der Differentialgleichung geht ALFEROW so vor, als ob E = const. wäre. Dann lautet die Lösung, wenn $p_x = p_e$ für x = l ist:

$$p_{z} = \left[p_{e} + \frac{B}{A}\left(l - \frac{1}{A}\right)\right]e^{A\left(l - x\right)} - \frac{B}{A}\left(x - \frac{1}{A}\right).$$
(15)

Für x = 0 ist

mit

$$p_0 = \left[p_e + \frac{B}{A}\left(l - \frac{1}{A}\right)\right]e^{Al} + \frac{B}{A^2}.$$
 (16)

ALFEROW hat ein Beispiel mit gemessener Druckverteilung $p_{\epsilon}(x)$ mit Rechnungen verglichen, in denen folgende Werte angesetzt wurden: $\alpha = 0,09; a = 30 \text{ cm}; b = 120 \text{ cm}; l = 60 \text{ cm}; \mu = 0,41; \nu = 0,3; E = 3 \text{ kg/cm}^2$ (dies ist eine sehr rohe Festlegung, wenn man bedenkt, daß nach den Berechnungen in [3], vgl. Fig. 7 in [8], der E-Wert von 0,2 bis 50 kg/cm² sich ändert, wenn γ von 60 bis 300 kg/m³ steigt). Bei den rechnerischen Untersuchungen war $p_{\epsilon} = 0,047 \text{ kg/cm}^2$, bei den Messungen $p_{\epsilon} = 0,137 \text{ kg/cm}^2$. Erhalten wird damit $a_m = 30 - 0,09 \cdot 60/2 = 27,3 \text{ cm}$,

$$\begin{split} A &= \frac{0.3}{1-0.3} \left(\frac{0.09 + 2 \cdot 0.41}{27.3} + \frac{2 \cdot 0.41}{120} \right) \\ &= \frac{3}{7} \left(0.0333 + 0.0068 \right) = 0.0172 \ \mathrm{cm^{-1}}, \end{split}$$

$$B = \frac{3 \cdot 0.09}{(1 - 0.3^2) \, 30} \, (0.0333 + 0.0068 \cdot 0.3) = \frac{0.009}{0.91} \, (0.009) \,$$

+ 0,0020) = 0,00035 kg cm⁻⁴

$$\frac{1}{A} = 58 \text{ cm}; \ l - \frac{1}{A} = 2 \text{ cm}; \ \frac{B}{A} = 0,0204 \text{ kg cm}^{-3};$$
$$\frac{B}{A} \left(l - \frac{1}{A} \right) = 0,040 \text{ kg cm}^{-2}; \ \frac{B}{A^2} = 1,19 \text{ kg cm}^{-2};$$

 $p_0 = (p_e + 0.040) e^{1.035} + 1.19.$

Das ergibt für $p_e = 0.137 \text{ kg/cm}^2$:

$$p_0 = 0,177 \cdot 2,81 + 1,19 = 1,69 \text{ kg/cm}^2$$

und für $p_e = 0.047 \text{ kg/cm}^2$:

$$n_0 = 0.087 \cdot 2.81 + 1.19 = 1.43 \text{ kg/cm}^2.$$

Daß Alferow $p_0 = 0,202 \text{ kg/cm}^2$ errechnet hat, beruht offenbar auf einem (Dezimal-) Fehler. Somit stimmen die Werte solcher Rechnungen nicht mit den Meßergebnissen $p_0 = 0,22 \text{ kg/cm}^2$ überein.

Bild 2: Kräfte an einer Scheibe des Preßguts im Kanal

Landtechnische Forschung 9 (1959) H. 6

Stroh, Heu, Grünfutter, Erde, Mehl, Staub, Schnee, Braunkohle und weitere Güter zeigen bei ihrer Zusammendrückung nicht lineare Deformationseigenschaften, die durch Elastizitätsmodule gekennzeichnet werden. Mit den Eindrückungen wächst der Widerstand stets progressiv. Die entsprechenden Deformationsgesetzmäßigkeiten für die landwirtschaftlichen Stoffe werden jetzt angeführt [7].

Zusammenhang zwischen Drücken und Raumgewicht

Die Gesetzmäßigkeiten für das Pressen von Stroh und Heu sind bisher zumeist dargestellt durch eine Funktion (Beziehung) zwischen dem Druck auf den Kolben p_0 und dem mittleren Raumgewicht des Preßguts γ_m auf Grund von Preßtopfversuchen (im Laboratorium). SKALWEIT [2] hat (in Abschnitten) als Gesetzmäßigkeit angesetzt:

$$p_0 = c \gamma_m^m \tag{17}$$

mit c und m als Konstante. Im folgenden wird ein Ansatz gemacht, der für $p_0 = 0$ das (endliche!) Raumgewicht des ungepreßten Materials $\gamma_m = \gamma_u$ ergibt [7]:

 $p_o = c (\gamma^m - \gamma_u^m).$

Eingeführt wird

$$p_c = c \, \gamma_u^m, \tag{19}$$

ferner

$$p_0^* = p_0 + p_c. (20)$$

Dann ergibt sich aus (18):

$$p_0^* = c \gamma^m. \tag{21}$$

In Bild 3 ist nach einem Versuch mit trockenem Weizen-Glattstroh p_e^* über γ_m im Bereich $\gamma_m > \gamma_u$, $p_0 > 0$ für $\gamma_u = 27$ kg/m³; m = 2,6; $c = 3,4 \cdot 10^{-6}$ (p in kg/cm², γ in kg/m³) aufgetragen. Dabei ist $p_e = 0,018$ kg/cm². Die dem Gesetz (21) entsprechende Gerade im doppelt-logarithmischen Diagramm ist in Bild 3 eingetragen (Strich-Punkt-Linie).

Die (örtliche) Verdichtung wird jetzt nicht zu dem Druck an der Kolbenfläche in Beziehung gesetzt, sondern (zunächst) zu dem örtlichen Druck in Preßrichtung p_x [6]:

1

$$p_x = c_x \left(\gamma^m - \gamma^m_u \right). \tag{22}$$

Bild 3: Auswertung der Ergebnisse eines Preßtopfversuches mit trockenem Weizen-Glattstroh

$$p_k = c_x \, \gamma_u^m \tag{23}$$

 $p_x^* = p_x + p_k \tag{24}$

ist dann

Mit

und

(18)

$$p_x^* = c_x \gamma^m. \tag{25}$$

Aus verschiedenen Preßtopfversuchen (mit Seitendruck- oder Bodendruckmessungen) ist auch die Querzahl ν auszuwerten. Ihre Größe ist natürlich von dem verwendeten Material, seinem Zustand (Feuchte) und seiner Lagerung abhängig. Auch die Höhe der Pressung (Raumgewicht) ändert die erhaltene Querzahl, wie einige Versuche zeigen [6; 7]. ALFEROW (6; 8] hat keine großen Einflüsse für den Pressungsgrad auf die Querzahl erhalten. Auch bei den folgenden Rechnungen wird mit einer für das gesamte Preßgut im Preßtopf einheitlichen Querzahl gerechnet, und zwar nach allen Richtungen gleich für Heu und Krummstroh, während Langstroh als hexagonales (anisotropes) Material angesetzt wird (vgl. [6], S. 159).

Für Langstroh ist $p_z = 0$ und

$$p_{y} = \nu p_{x} . \tag{26}$$

Wird nun das örtliche Raumgewicht des hexagonalen Materials als in gleicher Weise von p_y wie von p_z abhängig angesetzt, schreiben wir:

$$d(\gamma^m - \gamma^m_u) = p_x + p_y, \qquad (27)$$

woraus mit (26) erhalten wird:

$$d\left(\gamma^{m}-\gamma_{u}^{m}\right)=\left(1+\nu\right)p_{x}.$$
(28)

Durch Vergleich mit (22) wird für Langstroh erhalten:

$$d=(1+\nu)\,c_{\star}\,.$$

(29)

$$p_{J} = p_{z} = \frac{\nu}{1-\nu} p_{x} \tag{30}$$

mit v als Querzahl des isotropen Materials. Wird das örtliche Raumgewicht des isotropen Materials als in gleicher Weise von p_u und p_z wie von p_x abhängig angesetzt, schreiben wir:

$$d\left(\gamma^{m}-\gamma^{m}_{u}\right)=p_{z}+p_{y}+p_{z}. \tag{31}$$

Mit (30) wird erhalten

$$d(\gamma^{m} - \gamma_{u}^{m}) = p_{x}\left(1 + 2\frac{\nu}{1 - \nu}\right) = \frac{1 + \nu}{1 - \nu}p_{x}.$$
 (32)

Durch Vergleich mit (22) wird für isotropes Material crhalten:

$$d = \frac{1+\nu}{1-\nu} c_x. \tag{33}$$

In Bild 4 ist d/c_r über ν aufgetragen. Wegen der Vergleichbarkeit ist auch zum Beispiel der Ansatz (31) [wie (22) für Preßtopfverhältnisse] zulässig.

Das Preßgut hat nach Versuchen einen erheblichen Teil nicht zurückgehender, plastischer Verformung. Die aufgestellten Zusammenhänge zwischen Drücken und Raumgewichten gelten nur für zunehmende Verdichtungen, nicht für abnehmende Zusammendrückungen.

Bild 4: Beziehungen zwischen den Preßgutkonstanten d, c_{c} und der Poissonschen Querzahl ν für Glattstroh und für isotropes Material (Krummstroh, Heu und dergleichen)

Nichtlineare Deformationsansätze

In (1) und (2) war die Zusammendrückung ε benutzt. Bei den (im Verhältnis zu den Anfangsabmessungen der Preßkörper) großen auftretenden Deformationen soll aber nicht angesetzt werden:

$$\varepsilon = \frac{\Delta l}{l_0} , \qquad (34)$$

sondern aus

$$\begin{aligned} \mathbf{r} &= \int_{l_0} \frac{\mathbf{r}}{l} \quad (35) \\ \mathbf{r} &= \ln \frac{l}{l} \quad . \end{aligned}$$

Also ist im Preßtopf, wenn die jeweilige veränderliche Preßraumhöhe l heißt und die Höhe des Preßtopfes l_u ist:

$$\varepsilon = \ln \frac{l}{l_u} \,, \tag{37}$$

$$rac{l}{l_u} = e^e.$$

Nun ist

wird dann

daraus

$$\frac{\gamma_m}{\gamma_m} = \frac{l_u}{l} , \qquad (39)$$

also

$$\frac{\gamma_m}{\gamma_u} = e^{-\epsilon} \tag{40}$$

mit $\varepsilon < 0$ für Druck. Wir wenden die in (40) stehende Funktion unter Einsetzung von ε_x für das örtliche Raumgewicht an:

$$\frac{\gamma}{\gamma_u} = e^{-\varepsilon_x} \,. \tag{41}$$

Dann wird aus (22) erhalten:

$$p_x = p_k \left(e^{-m \, \varepsilon_x} - 1 \right). \tag{42}$$

Dieses ergibt für $\varepsilon_x = 0$ auch $p_x = 0$. Unter Einführung der Abkürzung

$$f(\varepsilon_x) = e^{-m \varepsilon_x} - 1 \tag{43}$$

$$p_x = p_k f(\varepsilon_x). \tag{44}$$

Statt vollständiger räumlicher nichtlinearer Behandlungen [9÷11] (mit Hinzuziehung der plastischen Eigenschaften!) wird hier mit v = const. ein vereinfachtes Gesetz, ähnlich den verallgemeinertenHOOKEschen Gleichungen, angenommen:

für Langstroh mit $\varepsilon_z = 0$:

$$p_x = g(\varepsilon_x) + \nu p_y,$$

$$p_y = g(\varepsilon_y) + \nu p_x,$$

$$(45)$$

wobei ε_x , ε_y die Deformationen des Preßguts in den entsprechenden Achsenrichtungen sind und die Funktion $g(\varepsilon)$ jetzt noch ermittelt wird; jede der Gleichungen in (45) gelte, da das Material nicht rein elastisch ist, nur, wenn das in der Gleichung enthaltene ε für jedes Materialteil gleichbleibt oder weiter im Sinne zunehmender Zusammendrückung verformt wird.

Im Preßtopf ist

$$\varepsilon_y = 0, \tag{46}$$

folglich wird

ferner ist

$$p_y = v \ p_x,$$
 $p_x = g \ (\varepsilon_x) + v^2 p_x,$

also

$$(1 - \nu^2) p_x = g(\varepsilon_x). \tag{47}$$

Mit (44) wird dann

$$(\varepsilon_x) = (1 - \nu^2) f(\varepsilon_x) p_k.$$

$$g(\varepsilon) = (1 - \nu^2) f(\varepsilon) p_k.$$

In Anlehnung an (43) gilt

$$f(\varepsilon) = e^{-m\varepsilon} - 1 \tag{50}$$

mit (35) beziehungsweise (36).

Landtechnische Forschung 9 (1959) H. 6

9

Für isotropes Material wird statt (45) angenommen:

$$p_{z} = h (\varepsilon_{z}) + \nu (p_{y} + p_{z}),$$

$$p_{y} = h (\varepsilon_{y}) + \nu (p_{z} + p_{x}),$$

$$p_{z} = h (\varepsilon_{z}) + \nu (p_{x} + p_{y}).$$
(51)

Im Preßtopf ist

folglich wird

$$p_y = p_z = \frac{r}{1 - r} p_x,$$
 (53)

(52)

(54)

(58)

ferner ist

$$p_x = h(\varepsilon_x) + 2\nu \frac{\nu}{1-\nu} p_x,$$

 $\left(1-\frac{2\nu^2}{1-\nu^2}\right)p_x=h\left(\varepsilon_x\right).$

 $\varepsilon_u = \varepsilon_z = 0,$

also

(38)

Mit (44) wird dann

$$h(\varepsilon_x) = \left(1 - \frac{2\nu^2}{1 - \nu}\right) f(\varepsilon_x) p_k.$$
(55)

Danach wird allgemein angesetzt für isotropes Material:

$$h(\varepsilon) = \left(1 - \frac{2\nu^2}{1 - \nu}\right) f(\varepsilon) p_k.$$
(56)

Auch hierbei gilt (50).

Gleichgewichtsansätze im Preßkanal

Bei den folgenden Untersuchungen für den Preßkanal von Strohpressen werden hier immer nur die Spitzenbelastungen bei drückendem Kolben betrachtet, nicht die Rückgänge.

Mit der Festlegung (36) ist die Deformationsgröße ϵ in Richtung der Hochachse (y) im Preßkanal nach Bild 1:

 $\epsilon_y = ln\left(1-\frac{\alpha}{a}x\right),$

$$\varepsilon_y = \ln \frac{a_x}{a}, \tag{57}$$

für kleine a:

also

$$e^{\varepsilon_y} = 1 - \frac{\alpha}{a} x \tag{59}$$

und nach (43):

$$f(\varepsilon_{\nu}) = \left(1 - \frac{\alpha}{a} x\right)^{-m} - 1.$$
(60)

[Die gleiche Lösung (60) ergibt sich auch, wenn durchgehend mit (34) statt (35) gerechnet wird.] Im üblichen Kanal für Strohpressen ist weiter

$$\epsilon_z = 0.$$
 (61)

Wir benutzen jeweils nicht die 1. Gleichung von (45) oder (51), das heißt, die Verteilung der ε_x wird nicht in Betracht gezogen. Für ε_{y} und ε_{z} gelten die Bedingungen für den Ansatz der Elastizitätsgleichungen (45) beziehungsweise (51).

Für isotropes Material ergibt sich damit

$$p_z = \nu (p_z + p_y), \qquad (62)$$

$$p_y = \nu (p_x + p_z) + h(\varepsilon_y) \qquad (63)$$

und daraus

wird

$$p_{y} = \frac{\nu}{1-\nu} p_{x} + \frac{1}{1-\nu^{2}} h(\varepsilon_{y}), \qquad (64)$$

$$p_{z} = \frac{\nu}{1-\nu} p_{x} + \frac{\nu}{1-\nu^{2}} h(\varepsilon_{y}).$$
 (65)

Unter Einführung der Abkürzung

$$j(\varepsilon) = \frac{.1}{1 - \nu^2} h(\varepsilon)$$
(66)

 $p_{y} = -\frac{\nu}{1 - \nu} p_{x} + j(\varepsilon_{y}),$ (67)

$$p_z = \frac{\nu}{1-\nu} p_z + \nu j (\varepsilon_y). \tag{68}$$

Für Langstroh ist dagegen:

$$p_{y} = v p_{x} + g (\varepsilon_{y}),$$

$$p_{z} = 0.$$
(45)

163

(26)

(48)

(49)

Bei einem Gleichgewichtsansatz gemäß Bild 2 werden Glieder, die von 2. Ordnung klein sind, vernachlässigt. Dementsprechend kann $a'_x \approx a_x$ gesetzt werden, aber in $(p_x + dp_x)$ $(a_x - \alpha dx)$ bliebe außer $a_x dp_x$ noch (- $p_x \alpha dx$). Eine Rechnung mit diesem Glied gibt nicht so gute Übereinstimmung mit den Meßergebnissen wie die folgende Rechnung. Man kann nur bei verschwindenden a den Druck auf den Deckel oben gleich dem Seitendruck p_y setzen. Besser, als genau nach Bild 2 vorzugehen, ist daher, $p_y b dx$ in Y-Richtung, $\mu p_y b dx$ entgegen der X-Richtung und alsdann als Differenz der Kräfte auf die Stirnflächen der Scheibe die Größe $dp_x a_x b$ (wie in [8]) anzusetzen. Anstelle von (9) erhalten wir damit die Näherungsgleichung:

$$\frac{dp_x}{dx} + 2\mu\left(\frac{p_y}{a_x} + \frac{p_z}{b}\right) = 0.$$
(69)

Mit (69; 45) erhalten wir für Langstroh die Differentialgleichung: $\frac{dp_x}{dx} + \frac{2 \mu \nu p_x}{a_x} + \frac{2 \mu}{a_x} g(\varepsilon_y) = 0$

mit (49; 60):

$$g(\varepsilon_g) = (1 - \nu^2) \left[\left(1 - \frac{\alpha}{a} x \right)^{-m} - 1 \right] p_k.$$
 (71)

Für isotropes Preßgut ist nach (9; 64; 65):

$$\frac{dp_x}{dx} + \left(\frac{\alpha + 2\mu}{a_x} + \frac{2\mu}{b}\right)\frac{\nu}{1-\nu}p_x + \left(\frac{\alpha + 2\mu}{a_x} + \frac{2\mu\nu}{b}\right)j(\varepsilon_x) = 0 \quad (72)$$
mit (66; 55; 60):

$$j(\varepsilon_{\nu}) = \frac{1 - \nu - 2\nu^2}{(1 + \nu)(1 - \nu)^2} \left[\left(1 - \frac{\alpha}{a} x \right)^{-\nu} - 1 \right] p_k. \quad (73)$$

Für $\alpha = 0$ ist speziell

$$\frac{dp_x}{dx} + A_0 p_x = 0, \qquad (74)$$

also

$$p_x = p_c \, e^{A_0(l-x)}, \tag{75}$$

wobei p_e der Längsdruck für das Kanalende x = l ist. Für Langstroh ist

a,

$$A_0 = 2 \ \mu \ \nu / a,$$
 (76)

für isotropes Material

$$A_{0} = \frac{2 \mu \nu}{1 - \nu} \frac{a + b}{a b} .$$
 (77)

Für $\alpha \neq 0$ sind die Differentialgleichungen (70) bzw. (72) mit

$$= a - \alpha x$$
 (6)

schwerer zu lösen. Um die Lösungen zu vereinfachen, wird bei allen folgenden Rechnungen wie in [8] von dem Näherungsansatz

$$a_x \approx a_m$$
 (78)

Bild 5: Berechnete p_x/p_e nach Gl. (90). gültig für die einfachste der aufgestellten Näherungen

Gebrauch gemacht. Die Differentialgleichung wird dann:

$$\frac{dp_x}{dx} + A p_x + C f(\epsilon_y) = 0.$$
(79)

Dabei ist für Langstroh

$$A \approx \frac{2 \mu \nu}{a - \alpha l/2} \tag{80}$$

$$C \approx \frac{2 \mu (1 - \nu^2)}{a - \alpha l/2} p_k \tag{81}$$

und für isotropes Material

$$A = \left(\frac{\alpha + 2\mu}{a_m} + \frac{2\mu}{b}\right)\frac{\nu}{1 - \nu}$$
(82)

$$C = \left(\frac{\alpha + 2\mu}{a_{m}} + \frac{2\mu\nu}{b}\right) \frac{1 - \nu - 2\nu^{2}}{(1 + \nu)(1 - \nu)^{2}} p_{k}.$$
 (83)

Für die Untersuchung eines Betriebseinsatzes einer Strohpresse sind die Größen A und C dann Konstante.

Einfache Lösung

(70)

Für (60) wird mit (6) geschrieben:

$$f(\epsilon_y) = \left(\frac{a_x}{a}\right)^{-m} - 1.$$
(84)

Wird auch hierin $a_x \approx a_m$ cingesetzt, dann ist

$$f(\varepsilon_y) = \left(\frac{a_m}{a}\right)^{-m} - 1 \tag{85}$$

$$= \left(\frac{a}{a_m}\right)^m - 1 \tag{86}$$

mit
$$a_m = a - \alpha \frac{\iota}{2}$$
. (11)

Dann erhält die Differentialgleichung (79) die Form:

$$\frac{dp_x}{dx} + A \ p_x + D = 0 \tag{87}$$

Ihre Lösung ist

$$D = C\left[\left(\frac{a}{a_m}\right)^m - 1\right].$$
(88)

$$p_x = F e^{-Ax} - \frac{D}{A} \tag{89}$$

und mit $p_x = p_e$ für x = l:

$$p = \left(p_e + \frac{D}{A}\right)e^{A(l-x)} - \frac{D}{A}.$$
 (90)

Damit wird

$$\frac{p_0}{p_e} = e^{A t} + \frac{D}{A p_e} \left(e^{A t} - 1 \right).$$
(91)

Nach (90) ist in Bild 5 p_x/p_e über A (l-x) für verschiedene $D/A p_e$ aufgetragen. Dabei ist für ausgerichtetes Material (Langstroh) nach (80ff.):

$$D = \frac{2 \mu (1 - \nu^2)}{a_m} \cdot \left[\left(\frac{a}{a_m} \right)^m - 1 \right] p_k$$
(92)

$$\frac{D}{A p_e} = \frac{1 - \nu^e}{\nu} \left[\left(\frac{a}{a_m} \right)^m - 1 \right] \frac{p_k}{p_e}$$
(93)

und für isotropes Material

$$D = \frac{1 - \nu - 2\nu^2}{(1 + \nu)(1 - \nu)^2} \left(\frac{\alpha + 2\mu}{a_m} + \frac{2\mu\nu}{b}\right) \left[\left(\frac{a}{a_m}\right)^m - 1\right] p_k \quad (94)$$
$$D = \frac{1 - \nu - 2\nu^2}{a b + 2\mu(b + \nu a_m)} p_k \quad (95)$$

$$\frac{D}{A p_e} = \frac{1 - \nu}{\nu (1 - \nu^2)} \frac{\alpha b + 2 \mu (b + \nu a_m)}{\alpha b + 2 \mu (b + a_m)} \frac{p_k}{p_e}.$$
 (95)

Wir berechnen jetzt die Werte $D/A p_e$ und A l für einige Zahlenbeispiele bei isotropem Material.

Die Größe p_k ist für $\gamma_u = 40 \text{ kg/m}^3$, $m = 2 \text{ und } c_x = 8 \cdot 10^{-5}$: $p_k = 0,128 \text{ kg/cm}^2$, für dieselben Bedingungen mit $c_x = 8 \cdot 10^{-6}$: $p_k = 0,0128 \text{ kg/cm}^2$. Für die folgenden Zahlenuntersuchungen sei stets angesetzt: $p_k/p_e = 0.5$ (also $p_e > 0!$), ferner m = 2. Es werden folgende Verengungen untersucht: $\alpha = 0$; 0,09 und 0,18. Sonst mögen dieselben Werte $(a, b, l, \mu \text{ und } \nu)$ wie im 1. Abschnitt gelten. Für diese Zahlenwerte ist $a_m/a = 1 - \alpha$. Erhalten wird

$$\begin{aligned} & \text{für } \alpha = 0 \dots \frac{a_m}{a} = 1; \ A \ l = 0.875; \frac{D}{A \ p_e} = 0; \ \frac{p_0}{p_e} : 2,40; \\ & \alpha = 0.09 \quad 0.91 \quad 1.033 \quad 0.176 \quad 3.11; \\ & \alpha = 0.18 \quad 0.82 \quad 1.220 \quad 0.420 \quad 4.39. \end{aligned}$$

In Bild 6 ist p_s/p_e über A(l-x) wie in Bild 5, aber für die oben angegebenen Zahlenbeispiele bei beliebiger Kanallänge l aufgetragen. Die Werte für l = 60 cm sind durch eine gestrichelte Linie verbunden.

Man erkennt aus den oben angegebenen Werten für p_0/p_e den progressiven Einfluß der Verengung. Wir bestimmen jetzt noch den Anstieg der p_0 mit α für $\alpha = 0$. Dazu wird nach (91) benötigt

sowohl
$$\left(\frac{dAl}{d\alpha}\right)_{\alpha=0}$$
 als auch $\left(\frac{dD/Ap_e}{d\alpha}\right)_{\alpha=0}$. Entwickelt wird

für isotropes Material aus (82):

$$A = \frac{\nu}{1-\nu} \left[\frac{\alpha+2\mu}{a} \left(1 - \frac{\alpha}{a} \frac{l}{2} \right)^{-1} + \frac{2\mu}{b} \right] \\ = \frac{2\mu\nu}{1-\nu} \left[\frac{1}{b} + \frac{1}{a} \left(1 + \frac{\alpha}{2\mu} \right) \frac{1}{1 - \frac{\alpha}{a} \frac{l}{2}} \right]$$
(96)

$$= \frac{2 \mu \nu}{1 - \nu} \left\{ \frac{1}{b} + \frac{1}{a} \left(1 + \frac{\alpha}{2 \mu} \right) \left[1 + \frac{\alpha}{a} \frac{l}{2} + \left(\frac{\alpha}{a} \frac{l}{2} \right)^2 + \left(\frac{\alpha}{a} \frac{l}{2} \right)^3 + \cdots \right] \right\}$$

$$= \frac{2 \mu \nu}{1 - \nu} \left\{ \frac{1}{b} + \frac{1}{a} + \left(\frac{1}{\mu} + \frac{l}{a} \right) \frac{\alpha}{2 a} \left[1 + \frac{\alpha}{a} \frac{l}{2} + \left(\frac{\alpha}{a} \frac{l}{2} \right)^2 + \cdots \right] \right\}$$

$$= A_0 + \frac{2 \mu \nu}{1 - \nu} \left(\frac{1}{\mu} + \frac{l}{a} \right) \frac{\alpha}{2 a} \frac{1}{1 - \frac{\alpha}{2} \frac{l}{2}}$$
(97)

$$= A_0 + \frac{2\nu}{1-\nu} \left(\frac{1}{l} + \frac{\mu}{a}\right) \frac{1}{\frac{2a}{\alpha l} - 1}.$$
(98)

Damit wird

$$\left(\frac{dAl}{d\alpha}\right)_{\alpha=0} = \frac{2\mu\nu}{1-\nu}\left(\frac{1}{\mu} + \frac{l}{a}\right)\frac{l}{2a}$$
$$= \frac{\nu}{1-\nu}\left(1+\mu\frac{l}{a}\right)\frac{l}{a}.$$
(99)

Weiter wird entwickelt

$$k = \left(\frac{a_m}{a}\right)^{-m} - 1$$

$$= \left(1 - \frac{\alpha}{a} \frac{l}{2}\right)^{-m} - 1$$

$$= m \frac{\alpha}{2} \frac{l}{\alpha} + \frac{m(m+1)}{2} \left(\frac{\alpha}{2} \frac{l}{a}\right)^2 + \frac{m(m+1)(m+2)}{6} \left(\frac{\alpha}{2} \frac{l}{a}\right)^3 + \dots,$$
(101)

auch ist

$$k = m \frac{\alpha l}{2 a_m} + \frac{m(m-1)}{2} \left(\frac{\alpha l}{2 a_m}\right)^2 + \frac{m(m-1)(m-2)}{6} \left(\frac{\alpha l}{2 a_m}\right)^3 + \cdots$$
(102)

$$\left(\frac{dG/A}{d\alpha}p_{e}\right)_{\alpha = 0} = \frac{1 - \nu - 2v^{2}}{\nu(1 - \nu^{2})} \frac{p_{k}}{p_{e}} m \frac{l}{2a} \frac{b + \nu a}{b + a} \left(\frac{dp_{0}/p_{e}}{d\alpha}\right)_{\alpha = 0} = e^{A_{0}l} \frac{\nu}{1 - \nu} \left(1 + \mu \frac{l}{a}\right) \frac{l}{a} + \frac{1 - \nu - 2v^{2}}{\nu(1 - \nu^{2})} \frac{p_{k}}{p_{e}} m \frac{l}{2a} \frac{b + \nu a}{b + a} \left(e^{A_{0}l} - 1\right).$$
(103)

Mit den obigen Zahlenwerten ergibt dies

$$\left(\frac{d \ p_0/p_e}{d \ \alpha}\right)_{\alpha = 0} = 2,40 \cdot 1,66 + 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 + 2,35 = 6,34 \cdot 1,68 \cdot 1,40 = 3,99 \cdot 1,68 \cdot 1,68 \cdot 1,40 = 3,99 \cdot 1,68 \cdot 1,68 \cdot 1,40 = 3,99 \cdot 1,68 \cdot 1,68$$

Nach der Aufstellung zuvor ist der Unterschied in p_0/p_s

Zu bedenken ist, daß alle diese Werte nur Näherungen gegenüber der vollständigen Rechnung darstellen. Für kleine α kann näherungsweise verwendet werden:

$$\frac{p_{0}}{p_{e}} \approx \left(\frac{p_{0}}{p_{e}}\right)_{\alpha = 0} + \left(\frac{d p_{0}/p_{e}}{d \alpha}\right)_{\alpha = 0} \alpha \tag{104}$$

$$= e^{A_{0}l} \left\{ 1 + \left[\frac{2 \nu}{1 - \nu} \left(1 + \mu \frac{l}{a}\right) + \frac{1 - \nu - 2 \nu^{2}}{\nu (1 - \nu^{2})} \frac{p_{k}}{p_{e}} m \frac{b + \nu a}{b + a} \left(1 - e^{-A_{0}l}\right) \right] \frac{\alpha l}{2 a} \right\} \tag{105}$$

mit

$$A_{0} = \frac{2 \mu \nu}{1 - \nu} \frac{a + b}{a b}.$$
 (77)

Man erhält damit für $\alpha > 0$ immer etwas zu kleine Werte.

Andere Näherungslösung

Im Gegensatz zu der Rechnung des vorigen Abschnitts wird jetzt darauf verzichtet, für die Querdehnung e_u längs des gesamten Kanals einen Mittelwert einzusetzen. Es ist aus (60) zu entwickeln:

$$f(\varepsilon_y) = m \frac{\alpha}{a} x + \frac{m(m+1)}{2} \left(\frac{\alpha}{a} x\right)^2 + \frac{m(m+1)(m+2)}{6} \left(\frac{\alpha}{a} x\right)^3 + \cdots$$
(106)

Für kleine $\frac{\alpha}{a}x$ wird darin als 1. Näherung angesetzt:

$$f(\epsilon_y) \approx m \frac{\alpha}{a} x.$$
 (107)

Dann wird aus (79):

$$\frac{d p_x}{d x} + A p_\varepsilon + B_1 x = 0 \tag{108}$$

$$B_1 = m \, \frac{\alpha}{a} \, C \,. \tag{109}$$

Die Lösung ist [8]:

 $A^2 p_e$

$$p_{x} = \left[p_{e} + \frac{B_{1}}{A}\left(l - \frac{1}{A}\right)\right]e^{A\left(l-x\right)} - \frac{B_{t}}{A}\left(x - \frac{1}{A}\right) \quad (110)$$

$$p_{x} = \left[1 + \frac{B_{1}}{A}\left(A - \frac{1}{A}\right)\right]e^{A\left(l-x\right)}$$

$$= \left[1 + \frac{A^2 p_e}{A^2 p_e} (A \ l - 1)\right] e^{A \ (l - 2)} - \frac{B_1}{A^2 p_e} [(A \ l - 1) - A \ (l - x)].$$
(111)

Dabei ist

p

mit

$$\frac{B_1}{A^2 p_e} = \frac{1 - \nu - 2 \nu^2}{(1 + \nu) \nu^2} m \frac{\alpha}{a} \frac{\frac{\alpha + 2 \mu}{a_m} + \frac{2 \mu \nu}{b}}{\left(\frac{\alpha + 2 \mu}{a_m} + \frac{2 \mu}{b}\right)^2}.$$
 (112)

In Bild 7 ist p_x/p_e über A(l-x) für verschiedene $B_1/A^2 p_e$ und A l aufgetragen. Aus (111) ergibt sich für x = 0:

$$\frac{p_0}{p_e} = \left[1 + \frac{B_1}{A^2 p_e} \left(A \ l - 1\right)\right] e^{A \ l} + \frac{B_1}{A^2 p_e} \,. \tag{113}$$

Für $\alpha=0$ ergibt sich derselbe Druckverlauf wie bei den anderen Rechnungen. Sonst ist

für
$$\alpha = 0,09...$$
 $\frac{B_1}{A^2 p_e} = 0,292;$ $\frac{B_1 l}{A p_e} = 0,302;$ $\frac{p_0}{p_e} = 3,12;$
 $\alpha = 0,18$ 0,507 0,618 4,28.

Bild 7: Lösungen für die Längsdrücke nach der Gl. (111), entwickelt aus einem Näherungsansatz 1. Grades

Die Unterschiede gegenüber den Ergebnissen bei Ansatz von $\varepsilon_v = \text{const. sind nicht groß.}$

Es wird aber jetzt noch eine weitere Näherung aus (106) durchgerechnet:

$$f(\varepsilon_y) \approx m \frac{\alpha}{a} x + \frac{m(m+1)}{2} \left(\frac{\alpha}{a} x\right)^2.$$
 (114)

Dann wird aus (79) mit B_1 und

$$B_2 = -\frac{m+1}{2} \frac{\alpha}{a} B_1 \tag{115}$$

erhalten:

$$\frac{d p_x}{d x} + A p_x + B_1 x + B_2 x^2 = 0.$$
 (116)

Die Lösung ist

$$p_{x} = p_{e} e^{A(l-x)} - \frac{B_{1}}{A} \left[x - \frac{1}{A} - \left(l - \frac{1}{A} \right) e^{A(l-x)} \right]$$

$$- \frac{B_{2}}{A} \left[x^{2} - \frac{2}{A} \left(x - \frac{1}{A} \right) - \left[l^{2} - \frac{2}{A} \left(l - \frac{1}{A} \right) \right] e^{A(l-x)} \right] (117)$$

$$= \left[p_{e} + \frac{B_{1}}{A^{2}} (A \ l - 1) + \frac{B_{2}}{A^{3}} (A^{2} \ l^{2} - 2 \ A \ l + 2) \right] e^{A(l-x)}$$

$$- \frac{B_{2}}{A} x^{2} - \left(\frac{B_{1}}{A} - 2 \ \frac{B_{2}}{A^{2}} \right) x + \frac{B_{1}}{A^{2}} - 2 \ \frac{B_{2}}{A^{3}} .$$
(118)

Für den größten Druck ergibt sich damit

$$p_{0} = \left[p_{e} + \frac{B_{1}}{A^{2}} (A \ l - 1) + \frac{B_{2}}{A^{3}} (A^{2} \ l^{2} - 2 \ A \ l + 2)\right] e^{A \ l} + \frac{B_{1}}{A^{2}} - 2 \frac{B_{2}}{A^{3}}.$$
 (119)

Bei den Zahlenbeispielen ist

für
$$\alpha = 0,09 \dots \frac{B_2}{A^2 p_e} = 0,077; \quad \frac{p_0}{p_e} = 3,18;$$

 $\alpha = 0,18 \qquad 0,225; \qquad 4,59.$

Man sieht, daß der Einfluß der höheren Glieder bei starken Verengungen noch beträchtlich ist.

Eingehendere Berechnungen

Wir berücksichtigen jetzt in $f(\varepsilon_w)$ den vollständigen Faktor $\left[\left(1-\frac{\alpha}{a}\right)^{-m}-1\right]$. Dagegen wird für a_x in (9) weiterhin a_m ein-

gesetzt. Dann lautet die Differentialgleichung

$$\frac{d p_x}{d x} + A p_x + H\left[\left(1 - \frac{\alpha}{a} x\right)^{-m} - 1\right] = 0 \qquad (120)$$

$$H = \frac{1 - \nu - 2\nu^{\circ}}{(1 + \nu)(1 - \nu)^{2}} p_{k} \left(\frac{\alpha + 2\mu}{a_{m}} + \frac{2\mu}{b} \right). \quad (121)$$

Für die Lösung dieser Differentialgleichung ergibt sich [12]:

$$p_{x} = e^{A(l-x)} \left\{ p_{e} - \int_{l}^{x} H\left[\left(1 - \frac{\alpha}{a} x \right)^{-m} - 1 \right] e^{-A(l-x)} dx \right\}, (122)$$

woraus erhalten wird:

mit

$$p_{x} = p_{\theta} e^{A(l-x)} - H \left\{ e^{-Ax} \int_{l}^{x} \left(1 - \frac{\alpha}{a} x \right)^{-m} e^{Ax} dx - \frac{1}{A} \left[1 - e^{A(l-x)} \right] \right\}.$$
 (123)

Für alle ganzzahligen positiven m führt (123) auf elliptische Integrale. Nach $\left[13\right]$ ist

$$\int \frac{e^{Ax} dx}{\left(x - \frac{a}{\alpha}\right)^{m}} = -e^{Ax} \sum_{\nu=1}^{m-1} \frac{A^{\nu-1}}{(m-1)(m-2)\cdots(m-\nu)} \left(x - \frac{a}{\alpha}\right)^{-(m-\nu)} + \frac{A^{m-1}}{(m-1)!} e^{A\frac{a}{\alpha}} Ei \left[A\left(x - \frac{a}{\alpha}\right)\right] + D.$$
(124)

D ist eine Integrationskonstante. Die Werte Ei(-z) sind bis z = 15 in [14] tabelliert. Aus (124) wird abgeleitet, zum Beispiel:

$$\int \left(1 - \frac{\alpha}{a}x\right)^{-1} e^{Ax} dx = -\frac{a}{\alpha} \left\{ e^{A} \frac{a}{\alpha} Ei \left[A\left(x - \frac{a}{\alpha}\right)\right] + D \right\}$$
(125)
$$\int \left(1 - \frac{\alpha}{a}x\right)^{-2} e^{Ax} dx$$
$$= \left(\frac{a}{\alpha}\right)^{2} \left\{A e^{A} \frac{a}{\alpha} Ei \left[A\left(x - \frac{a}{\alpha}\right)\right] - \frac{1}{x - \frac{a}{\alpha}} e^{Ax} + D \right\}$$
(126)
$$\int \left(1 - \frac{\alpha}{a}x\right)^{-3} e^{Ax} dx = -\left(\frac{a}{\alpha}\right)^{3} \left\{A^{2} e^{A} \frac{a}{\alpha} Ei \left[A\left(x - \frac{a}{\alpha}\right)\right]\right\}$$

$$-\frac{1}{x-\frac{a}{\alpha}}e^{Ax}\left[A-\frac{1}{x-\frac{a}{\alpha}}\right]+D$$
(127)

Für m = 2 ergibt sich dann aus (123) mit (126):

$$p_{z} = p_{e} e^{A(l-z)} - H\left(\frac{a}{\alpha}\right)^{2} \times \left\{ X e^{A\left(\frac{a}{\alpha}-x\right)} \left\{ Ei\left[A\left(x-\frac{a}{\alpha}\right)\right] - Ei\left[A\left(l-\frac{a}{\alpha}\right)\right] \right\} - \frac{1}{x-\frac{a}{\alpha}} + \frac{1}{l-\frac{a}{\alpha}} e^{A(l-z)} - \frac{H}{A} \left[e^{A(l-z)}-1\right].$$
(128)

Wird zur Abkürzung eingeführt:

$$E_{x} = e^{A\left(\frac{a}{\alpha} - x\right)} \left\{ Ei\left[A\left(x - \frac{a}{\alpha}\right)\right] - Ei\left[A\left(l - \frac{a}{\alpha}\right)\right] \right\}, \quad (129)$$
dann ist

$$p_{x} = \left(p_{e} + H \frac{a}{\alpha} \frac{1}{1 - \frac{\alpha}{a} l} - \frac{H}{A}\right) e^{A(l-z)} - \frac{H}{A} \left(A \frac{a}{\alpha}\right)^{2} E_{x} - H \frac{a}{\alpha} \frac{1}{1 - \frac{\alpha}{a} x} + \frac{H}{A}, \quad (130)$$

$$\frac{p_{z}}{p_{e}} = \left[1 + \frac{H}{A p_{e}} \left(A \frac{a}{\alpha} \frac{1}{1 - \frac{\alpha}{a} l} - 1\right)\right] e^{A(l-z)} - \frac{H}{A p_{e}} \left[\left(A \frac{a}{\alpha}\right)^{2} E_{x} + A \frac{a}{\alpha} \frac{1}{1 - \frac{a}{\alpha} x} - 1\right].$$
(131)

Landtechnische Forschung 9 (1959) H. 6

Tafel 1: Berechnung des Druckverlaufs für $\alpha = 0.09$

z	x [cm]	— Ei (—z)	e²	E _x	27,6 E _x	$e^{A(l-x)}$	$6,04 e^{A(l-z)}$	$\frac{1}{1-\frac{\alpha}{\alpha}x}$	$4,82\frac{1}{1-\frac{\alpha}{a}x}$	$\frac{p_{z}}{p_{e}}$
4,7 4,8 4,9 5,0 5,74	$60 \\ 54 \\ 48 \\ 42 \\ 0$	$\begin{array}{c} 0,001635\\ 0,001453\\ 0,001291\\ 0,001148\\ 0,00050 \end{array}$	110 121 134 148 311	0 0,0220 0,0463 0,072 0,353	0 0,61 1,27 1,99 9,70	1 1,11 1,23 1,36 2,80	$\begin{array}{c} 6,04\\ 6,71\\ 7,43\\ 8,21\\ 16,93\end{array}$	$1,220 \\ 1,192 \\ 1,168 \\ 1,143 \\ 1$	5,88 5,75 5,63 5,51 4,82	1,00 1,19 1,37 1,55 3,25

Tafel 2: Berechnung des Druckverlaufs für $\alpha = 0,18$

z	x [cm]	Ei (z)	C ^z	Ex	9,93 E _x	$e^{A(l-x)}$	4,71 $e^{A(l-z)}$	$\frac{1}{1-\frac{\alpha}{\alpha}x}$	$2,92 \frac{1}{1-\frac{\alpha}{a}x}$	$\frac{p_x}{p_s}$
2,18 2,2 2,4 2,6 2,8 3,0 3,2 3,4	60,0 59,0 49,2 39,4 29,5 19,7 9,8 0	$\begin{array}{c} 0,03825\\ 0,03719\\ 0,02844\\ 0,02185\\ 0,01686\\ 0,02304\\ 0,01013\\ 0,00789 \end{array}$	$\begin{array}{c} 8,85\\ 9,03\\ 11.02\\ 13,46\\ 16,45\\ 20,09\\ 24,53\\ 29,96\end{array}$	0 0,0096 0,1082 0,2208 0,352 0,507 0,690 0,910	$0 \\ 0,10 \\ 1,08 \\ 2,19 \\ 3,50 \\ 5,04 \\ 6,85 \\ 9,03$	1 1,021 1,522 1,858 2,27 2,77 3,39	$\begin{array}{r} 4,71\\ 4,81\\ 5,88\\ 7,18\\ 8,75\\ 10,69\\ 13,03\\ 15,97\end{array}$	$1,563 \\ 1,547 \\ 1,420 \\ 1,310 \\ 1,217 \\ 1,130 \\ 1,060 \\ 1$	$\begin{array}{c} 4,57\\ 4,52\\ 4,15\\ 3,82\\ 3,55\\ 3,30\\ 3,10\\ 2,92 \end{array}$	$1,00 \\ 1,05 \\ 1,51 \\ 2,03 \\ 2,55 \\ 3,19 \\ 3,94 \\ 4,88$

Bei dem Beispiel mit $\alpha = 0.09$ wird daraus

$$\frac{p_x}{p_e} = 6.04 \ e^{A(1-x)} - 27.6 \ E_x - 4.82 \ \frac{1}{1 - \frac{a}{\alpha} x} + 0.840.$$

Die Werte z in Ei(-z) gehen bei diesem Beispiel von 5,74 bei x = 0 bis 4,70 bei x = l. In diesem Bereich sind nur wenige Werte im Buch von JAHNKE-EMDE [14] tabelliert. Das elliptische Integral, das in der folgenden Tabelle für z = 5,74 eingesetzt ist, wurde aus einer Auftragung der in [14] angegebenen Werte in einem einfach logarithmischen Diagramm entnommen. Berechnet wurde danach Tafel 1.

Für $\alpha = 0,18$ wird erhalten

$$\frac{p_x}{p_e} = 4,72 \ e^{A(1-x)} - 9,93 \ E_x - 2,92 \ \frac{1}{1 - \frac{\alpha}{a} x} + 0,858 \ .$$

Berechnet wurde mit Hilfe von [14] danach die Tafel 2.

Die so errechneten Punkte sind in Bild 8 eingetragen. Der Druckverlauf entspricht in etwa den nach Messungen erhaltenen. Die errechneten Verhältnisse für po/pe von 3,25 und 4,88 sind durch die bei der vorherigen 2. Näherung mit 3,18 und 4,59 berechneten Werte ziemlich erreicht. Dagegen ist die 1. Näherung des vorigen Abschnitts nur für die kleine Verengung mit dem Ergebniswert 3,12 ziemlich genau. Die Verläufe für die 1. Näherung des vorigen Abschnitts sind in Bild 8 gestrichelt, die der einfachen Rechnung des vorvorigen Abschnitts ausgezogen eingetragen. Beide Lösungen weichen nicht viel voneinander ab.

Alles in allem sind die Unterschiede der Ergebnisse der genaueren Rechnung gegenüber einfacheren nicht so groß, daß der Aufwand der genaueren Rechnung für Strohpressen weiterhin als lohnend anzusehen ist. Schon die erste einfache Lösung mit ihren Näherungsformeln gibt die Druckverhältnisse in Strohpressen für kleine Verengungswinkel einigermaßen gut wieder. Aus den Ergebnissen sind die verschiedenen Einflüsse (Verengung, Abmessungen des Kanals, Reibungsbeiwert, Ausgangsdichte des Preßguts usw.) zu entnehmen.

Die Wanddrücke werden alsdann nach den Beziehungen (67) und (68) bestimmt. Beide Größen (Seitendruck p, und Deckeldruck p2) enthalten nach diesen Beziehungen einen Anteil, der dem Längsdruck p, proportional ist. Der Proportionalitätsfaktor

ist $\frac{\nu}{1-\nu}$, das heißt 0,428 für $\nu = 0,3$. Das in dem Zusatzglied

enthaltene $j(\varepsilon_y)$ ist stets für x=0 (das heißt für den Anfang des Preßkanals) gleich Null. Folglich sind am Anfang des Preßkanals die Drücke auf die Seitenwand und auf den Deckel gleich groß. Ohne Verengung ($\alpha = 0$) wird $j(\varepsilon_u) = 0$, es verschwindet das Zusatzglied für alle Stellen des Preßkanals. In diesem Fall sind die Drücke auf die Seitenwände und auf den Deckel gleich

$$p_{\nu} = p_z = \frac{\nu}{1 - \nu} p_x.$$
 (30)

Bei linearer Verengung ($\alpha > 0$) nimmt $j(\varepsilon_a)$ von x = 0 bis x = lstetig zu. Die Drücke am Deckel (p_z) sind für 0 < x < l größer

Bild 8: Verteilung der Längsdrücke bei drei Kanalverengungen nach ver-schiedenen Näherungsrechnungen

- nach einfachster Näherungsrechnung nach nächster Näherung 1. Grades nach eingehender Berechnung für $\alpha = 0,09$ nach eingehender Berechnung für $\alpha = 0,18$

Bild 9: Berechnete Wanddruckverteilungen auf Seitenwand und Deckel (und Rechnungsantelle) für zwei verschiedene Kanaleinstellungen

Bild 10: Modellkanal mit Wanddruckmessern

als die Drücke an den Seitenwänden (p_{y}) . Für $\alpha = 0,09$ sind die berechneten Druckverteilungen auf die Seitenwände und auf den Deckel in Bild 9 eingetragen unter anderem.

Hinter dem Kanalende ist der Seitendruck am Preßgut Null. Der Längsdruck im Angenblick des höchsten Preßdruckes richtet sich in den ungebundenen Teilen nach dem Druck des Stranges am Ende des zuvor gebundenen Balkens. Im gebundenen Teil ist der Druck mindestens ebenso groß wie dort, wenn das Stück nicht gebunden wäre, aber auch mindestens gleich dem durch die Bindegarne bewirkten Druck, für den ALFEROW in [8] eine Berechnung angegeben hat.

Bild 11: Aufbau der benutzten Wanddruckmesser

Bild 12: Gemessene Wanddruckverteilungen bei einem maximalen Kolbendruck von 9 kg/cm²

Bild 13: Gemessene Wanddruckverteilungen bei einem maximalen Kolbendruck von 10 kg/cm²

Meßergebnisse

Wanddruckverteilungen sind beim Durchdrücken von Heu von 8 bis 10% Feuchtigkeit in einem kleinen Modellkanal experimentell festgestellt worden. Die Größe des Kanals richtete sich danach, daß von einer vorhandenen hydraulischen Drückeinrichtung die erforderlichen Kräfte und Wege aufgebracht werden mußten und daß mindestens je drei gebaute Wanddruckmesser hintereinander an Scitenwand und Deckel untergebracht werden konnten (Bild 10). Der Querschnitt des Prcßkolbens wurde quadratisch 5×5 cm². Der Preßkanal war 20 cm lang. Der Deckel war um eine Querachse am Kanalanfang drehbar, wobei - wie bei den Strohpressen - zwei verschieden vorspannbare Federn den Gegendruck gegen den Deckel lieferten (Bild 10). Die endgültige Ausführung, bei der der Deckel verstärkt war, ist hier nicht wiedergegeben, weil man bei dieser Ausführung die Druckmesser auf dem Deckel nicht mehr sehen konnte. Entsprechend den kleinen Abmessungen des Kanals und seiner Füllöffnung (Bild 10) wurden immer nur kleine Mengen von Heu bei jedem Preßhub zugeführt. Der Aufbau der benutzten - für diese Versuche besonders entwickelten - Wanddruckmesser ist in Bild 11 angegeben. In die Wandungen wurden kreisrunde Löcher von 36 mm Durchmesser geschnitten. In diese sind Meßkolben von 35 mm Durchmesser, die nicht an den Wandungen reiben, so eingesetzt, daß sie mit der Innenseite der Wand bündig abschließen. Die Meßkolben werden in zwei Membranen geführt, so daß sie unter Belastung ganz kleine, die Membranen axial durchdrückende Verlagerungen federnd ausführen. An der einen Membran sind radial einander gegenüber zwei Dehnungsmeßstreifen aufgeklebt. Zwei andere Dehnungsmeßstreifen befinden sich als Ausgleichsglieder am Rand. Die Dehnungsmeßstreifen sind so geschaltet, daß die gemessenen Widerstandsänderungen den Durchfederungen und damit den Normaldruckkräften auf dem Mcßkolben proportional sind. Die ausgeführten Mcßdosen zeigten in dem benutzten Meßbereich praktisch keine Hysteresis. Was aber besonders wichtig war: die Wanddruckmesser zeigten bei Belastung der Kolben an verschiedenen Stellen seiner Oberfläche und bei Zusatz von Tangentialkräften bis zur Größe der Belastungskräfte, so daß die resultierenden Kräfte bis zu 45° gegenüber der Kolbenachse geneigt waren, Abweichungen in den Meßergebnissen von weniger als 3%. Damit erwiesen sich diese Meßgeräte nach den vorangegangenen Prüfungen als Wanddruckmesser für diese Versuche geeignet. Der Verlauf der Drücke wurde bei den Versuchen registriert und jeweils der Höchstwert beim Preßvorgang abgegriffen.

Es wurden Versuche mit verschiedenen Vorspannungen und Verengungen des Kanals und entsprechend verschieden hohen Kolbendrücken durchgeführt. Jedesmal wurden erst so viele Preßhübe ausgeführt, daß einigermaßen stationäre Zustände eintraten. Genaues Wiederkehren der Werte bei den aufeinanderfolgenden Hüben ist bei der Ungleichförmigkeit des Preßgutes nicht zu erzielen (vgl. auch die Unterschiede der Werte "vor" und "nach dem Versuch" in Bild 14 und 15). Da also Streuungen auftreten, ist den einzelnen Werten der Bilder 12 bis 15 keine zu große Sicherheit beizumessen. Im großen und ganzen sind Übereinstimmungen mit den theoretisch ermittelten Verläufen festzustellen.

Bild 14: Gemessene Wanddruckverteilungen bei einem maximalen Kolbendruck von 18 kg/cm²

Bild 15: Gemessene Wanddruckverteilungen bei einem maximalen Kol-bendruck von 23 kg/cm²

Die Drücke des Kolbens wurden bei jedem Versuch am Öldruckmanometer abgelesen. Als Beispiel für eine Unterlage zur Nachprüfung von Berechnungen ist die Änderung der Kolbendrücke mit den Vorspannungen der Federn in Bild 16 wiedergegeben. Die Federn saßen in einem Abstand von 150 mm von der Deckeldrehachse. Ihre Abmessungen betrugen: Drahtstärke 5 mm \emptyset , Wickeldurchmesser 20 mm, Anzahl der Windungen 4. Man ersieht aus Bild 16 trotz Streuungen eine Gesetzmäßigkeit für die Zunahme der Kolbendrücke bei Erhöhung der Federvorspannungen. Im Modellkanal wurden auch Längsdrücke mit einem durch den Kanal mit dem Strang durchlaufenden Kraftmesser gemessen. In Bild 17 sind Ergebnisse davon aufgetragen. Wegen der Streuungen sind Kurven nicht hindurchgelegt worden. Die Abweichungen gegenüber den theoretisch erwarteten Verläufen sind nicht groß. In diesem Zusammenhang werden nochmals die Ergebnisse von FRANKE [1] für den Verlauf der Längsdrücke p_x in Strohpressen (Bild 18) angeführt. Wie in [5] bereits angenommen, ist die hindurchzulegende Kurve nicht nach unten gekrümmt. Einen entsprechenden Verlauf hat auch ALFEROW [3] nach Rechnungen und Messungen angegeben.

Längsdrücke wurden auch in Strangpressen für die Braunkohlenbrikettierung von WUJETZ [15] gemessen. Ergebnisse sind in [16] angegeben, wovon ein Verlauf in Bild 19 wiedergegeben ist. Wie bei Stroh und Heu gehen bei Braunkohle die Drücke zunächst beim Zurückziehen des Preßkolbens zurück. Weiter in dem Preßkanal werden die verbleibenden Drücke den Höchstdrücken nahezu angeglichen. Im weiteren Verlauf des Preßkanals werden Höchstund Restdrücke immer kleiner. Die bei der Braunkohlenbrikettierung verwendete Kanalform ist anders als in Strohpressen (Bild 20).

Es ist also festzustellen, daß - von Streuungen durch Ungleichmäßigkeiten im Preßgut abgesehen — die Verläufe für die Längsund Wanddrücke in den Preßkanälen von Strohpressen etwa so sind, wie nach den Rechnungen hier erhalten wurde.

Zusammenfassung

Zwischen den Abmessungen der Preßkanäle von Heu- und Strohpressen (Länge, Verengung, Breite usw.) sowie den Drücken und erzielten Pressungen bestehen Beziehungen, die durch die vorstehende Rechnungsmethode aufgedeckt werden. Diese Methode ist durch verschiedene Meßergebnisse belegt. Außerdem werden in dieser Untersuchung die Gesetzmäßigkeiten für die Verteilung der Drücke an den Wandungen der Preßkanäle und in den Preßgütern erhalten. Statt der ausführlichen Rechnungen können auch einfachere Näherungsrechnungen angewandt werden, die die Ergebnisse gut wiedergeben. Die Verdichtungsgesetzmäßigkeiten der stark plastischen landwirtschaftlichen Preßgüter wurden dabei berücksichtigt.

Bild 19 (rechts): Zeitliche Längsdruckverläufe, die In Braunkohienbriketts bei Ihrer Herstellung geniessen wurden

Bild 16: Änderungen des maximalen Kolbendrucks bei verschiedener Federvorspannung nach Versuchen am Modellkanal

Bild 18: Frühere Ergebnisse von Versuchen zur Bestimmung der Längs-druckvertellungen

Schrifttum

- FRANKE, RUDOLF: Untersuchung des Preßvorganges bei Strohpressen in der Landwirtschaft. Diss. TH Berlin 1933, s. a. Techn. i. d. Landw. 16
- der Landwirtschaft. Diss. TH Berlin 1933, s. a. Techn. i. d. Landw. 16 (1935), S. 30-32
 [2] SKALWEIT, HELMUT: Kräfte und Beanspruchungen in Strohpressen. 4. Konstrukteur-Kursus. In: RKTL-Heft 88 (1938) S. 30-35
 [3] ALFEROW, S. A.: Gesetzmäßigkeiten beim Pressen von Stroh (russisch). Selchozmašina 1957 Nr. 3, S. 6-10
 [4] CHRAPATSCH, E. I.: Festigkeitsberechnung der Prcßkammer von Heupressen (russisch). Traktory i Selchozmašiny 1958, Nr. 1, S. 199-22
 [5] MEWES, ERNST: Kraftmessungen in Strohpressen. In: 15. Konstrukteurheft. Düsseldorf VDI-Verlag, 1958, S. 18-35 (Grundlagen der Landtechnik Heft 10)
- Heft 10)
- [6] MEWES, ERNST: Zum Verhalten von Preßgütern in Preßtöpfen. Landtechn. Forsch. 8 (1958) S. 158—164
 [7] MEWES, ERNST: Verdichtungsgesetzmäßigkeiten nach Preßtopfversuchen.
- Landtechn, Forsch. 9 (1959) S. 68-75 ALFEROW, S. A.: Der Widerstand der Preßkanäle und Ballenauswurf-leitungen in Heu- und Strohpressen (russisch). Selchozmaßina 1957 Nr. 4, [8]
- S. 15-19

Versuch mit den Ergebnissen von Bild 19 verwendet wurde

[9] JUNG, HANS: Ein Beitrag zur nichtlinearen Elastizitätstheorie. Ing. Arch.

- [9] JUNG, HANS: Ein Beitrag zur nichtlinearen Elastizitätstheorie. Ing. Arch. 21 (1953) S. 194-207
 [10] KATDERER, HANS: Ein nichtlineares Elastizitätsgesetz; Aufbau und An-wendungsmöglichkeiten. In: IUTAM-Kolloquium: Verformung und Fließen des Festkörpers. Springer, Berlin. S. 187-202
 [11] KAUDERER, HANS: Nichtlineare Mechanik. Springer, Berlin. 1958
 [12] KAMKE, E.: Differentialgleichungen; Lösungsmethoden und Lösungen. Bd. I. Akadem. Verl. Ges. Leipzig 1944
 [13] GRÖBERE, WOLFGANG und NIKOLAUS HOFREITER; Integraltafel. Erster Teil. Springer, Wien 1949
 [14] JAHNKE-EMDE: Tafeln höherer Funktionen. 4. Aufl. Teubner, Leipzig 1948
 [15] WUJETZ, PAUL: Neuerungen in Brikettfabriken. Braunkohle, Wärme und Energie (1955) S. 130-148
 [16] PRINZ, WALTER: Über den Einfluß des Werkstoffes und der Formgebung auf den Verschleiß von Schwalbungen für Braunkohlen-Brikett-Strang-pressen. Diss. TH Braunschweig 1958

Résumé

Ernst Mewes: "The Distribution of Pressures in Hay and Straw Baling Presses".

There are definite relations between the dimensions of the pressure grooves (length, contraction, width, etc.) of hay and straw baling presses and the pressures obtained in them. These relationships were brought to light during the course of some calculations described in the article. The results obtained by this method are further supported. by various measurements that were made. Furthermore, the results of this investigation enable the theoretical principles governing the distribution of pressures on the walls of the pressure grooves to be determined. Simplified approximate calculations can also be used instead of the afore-mentioned detailed calculations. These simple calculations further serve to support the results of the investigations. The theoretical principles governing compression of such highly plastic

F. Lorenz:

Beitrag zur Messung der Körnerfolgen von Einzelkornsägeräten

Landtechnische Abteilung des Landwirtschaftlichen Forschungsinstituts Pretoria, Südafrika

Für die Prüfung und Weiterentwicklung von Einzelkornsägeräten ist es erforderlich, daß die Körnerfolgen bekannt sind, die mit diesen Geräten ermöglicht werden können. Bei den bisherigen Arbeiten wurden die Körnerfolgen hauptsächlich mit dem Leimstreifenverfahren [1; 2; 3] gemessen. Die Einflüsse des Furchenschares können mit dieser Methode allerdings nicht untersucht werden. Das Schar wirkt hier lediglich als Verlängerung des Saatleitungsrohres. Durch die weiter unten beschriebenen Versuche konnte aber nachgewiesen werden, daß das Furchenschar einen erheblichen Einfluß auf die Körnerfolgen und damit auch auf die Pflanzenfolgen ausübt. Die Anordnung von Sägerät und Samenregistriereinrichtung ist in Bild 1 zu sehen.

Nach Angaben des Verfassers wurde ein elektronisches Gerät entwickelt¹), das die Körnerfolgen zwischen dem Sämechanismus und dem Furchenschar registriert und unter praktischen Arbeits-

¹) Die elektronische Prüfeinrichtung wurde entwickelt von C. A. RAMSBOTTOM, National Physical Research Laboratory, Council for Scientific and Industrial Research, Pretoria.

Bild 1: Schlepper mit Sägerät und Samenregistriereinrichtung

substances as hay and straw were also taken into consideration when making these calculations.

Ernst Mewes: Calcul de la répartition de la pression dans les presses à paille et à fourrage.

Il existe des rapports entre les dimensions des canaux de compression des presses à paille et à fourrage (longueur, étranglement, largeur etc.), d'une part, et les pressions et les densités obtenues, d'autre part, qui sont éclaircis par la méthode de calcul exposée dans l'article présent. Les différents résultats démontrent l'utilité pratique de cette méthode. Ces recherches permettent en outre de révéler les lois régissant la répartition des pressions sur les parois des canaux et dans les produits à comprimer. Au lieu des calculs detaillés, on peut aussi faire des calculs simplifiés approximatifs qui donnent des résultats assez exacts. On a tenu compte également des lois de densification valables pour les produits agricoles fortement plastiques.

Ernst Mewes: «Cálculo de la distribución de la presión en prensas de paja y de heno».

Existen relaciones entre las dimensiones de los canales de compresión de las prensas de paja y heno (largo, estrechamiento, ancho etc.) y las presiones, así como la compresión que se descubren por el método empleado que se ha comprobado con varios resultados. Además estas investigaciones ponen de manifiesto la ley teórica para la distrubución de las presiones en las paredes de los canales y en el material prensado. En vez de los cálculos detallados pueden emplearse también cálculos aproximados más sencillos, cuyos resultados responden bien a las necesidades de la práctica. Se han tenido en cuenta las teorías de compresión de los productos agrícolas altamente plásticos.

bedingungen der Sägeräte auf dem Felde angewendet werden kann. Das Saatleitungsrohr wurde durchschnitten und ein Lichtstrahl so durchgelegt, daß der gesamte Rohrquerschnitt gleichmäßig ausgeleuchtet wurde. Sobald ein Samenkorn den Lichtstrahl passiert, wird die Lichtintensität auf einer Photozelle verringert, wodurch das Potential der Anode der Photozelle wächst. Die Anordnung der Lichtquelle, des Linsensystems und der Photozelle ist in Bild 2 dargestellt. Die Photozelle liefert somit für jeden den Lichtstrahl durchfallenden Samen einen Impuls. Diese Impulse werden auf einem Tonband registriert, und zwar in den Abständen, in denen die Samenkörner den Lichtstrahl passieren.

Die Empfindlichkeit des Registriergerätes konnte in sechs Stufen geregelt werden, um Sandkörner, kleine Käfer oder Teile von zerbrochenen Körnern von der Registrierung auszuschließen. Bei empfindlichster Einstellung konnten Teilchen von 1 mm Durchmesser sicher erfaßt werden. Das Gerät war so ausgelegt, daß maximal fünfzig Samen in der Sekunde registriert werden konnten.

Zur Kontrolle des Radschlupfes beim Sägerät wurden an dem Kettenrad, das den Sämechanismus treibt, Mitnehmer angebracht, die einen Schalter betätigen und durch kurzzeitiges Schließen eines Stromkreises Impulse erzeugten. 1 bis 6 Mitnehmer konnten nach Wahl an dem Kettenrad angebracht werden, so daß auch bei einer Umdrehung des Rades 1 bis 6 Impulse erzeugt werden konnten. Diese Impulse wurden ebenfalls auf dem Tonband gespeichert. Die Samenimpulse wurden als modulierte Schwingungen

Bild 2: Anordnung der Lichtquelle, des Linsensystems und der Photozelle für die Samenregistrierung