$$\eta = \eta_{W} + 2.8 \cdot 10^{-4} T S^{3,1},$$

nw dynamische Viskosität des Wassers

 $\eta_w = 0,001 \text{ Pa} \cdot \text{s}.$

Eine zweite Näherung ist der Ansatz von Herschel und Bulkley nach Gl. (7):

(5)

(6)

$$\tau = \tau_0 + \eta D^\circ, n \neq 1; \tag{7}$$

n Exponent.

Bei Verwendung dieses Ansatzes, der dem besonderen Verlauf der Fließkurven im Bereich kleiner Schergefälle allerdings in keiner Weise Rechnung trägt, gelten für die rheologischen Parameter τ_0 , η und n folgende Gleichungen:

$\tau_0 = 6.5 \cdot 10^{-7} \mathrm{TS}^{6.2},$	(8)
$n = 1 - 0,18 \text{ TS}^{0.44},$	(9)
$\eta = \eta_w + 8.6 \cdot 10^{-6} TS^{5.3}$,	(10)
$\eta_w = 0,001 \text{ Pa} \cdot \text{s}^n.$	(11)

Mit komplizierteren Ansätzen besteht die Möglichkeit, die gemessenen Fließkurven noch genauer zu beschreiben. Abgesehen vom sich dabei ergebenden Problem der Konstantenbestimmung haben solche Ansätze in konkreten Anwendungsfällen jedoch einen unvertretbar hohen Rechenaufwand zur Folge.

Erste Anwendungen der Modellgleichungen

Bei der Rationalisierung eines Hygienebereichs war im Institut für Geflügelwirtschaft Merbitz die Frage zu beantworten, ob und über welche Entfernungen trockensubstanzreiche Hühnergülle mit handelsüblichen Schöpfkolbenpumpen und Doppelschöpfkolbenpumpen gefördert werden kann. Dazu wurde analog zur Druckverlusttabelle von Hörnig [3] ein Tabellenwerk erarbeitet. Aus den Berechnungen geht klar hervor, daß trockensubstanzreiche Hühnergülle wegen des zu erwartenden hohen Druckverlustes bestenfalls durch einen Güllegeber gepumpt werden kann, längere Förderstrecken aber nur mit sehr teuren und energieaufwendigen Spezialpumpen (z. B. Betonpumpen) überwunden werden können.

Zusammenfassung

Der Übergang zu trockensubstanzreicher Hühnergülle ist für alle Betriebe mit industrieller Geflügelproduktion eine unumgängliche Notwendigkeit. Dafür ist jedoch eine Technik notwendig, die die hohen Schubspannungen in dieser Hühnergülle überwinden kann. Die Entwicklung einer solchen Technik verlangt die genaue Kenntnis der rheologischen Eigenschaften der Gülle, über die erste Meßergebnisse, Fließkurven und Modellgleichungen vorgelegt werden. Den Technikern und Ingenieuren der Geflügelwirtschaft, die sich mit der trockensubstanzreichen Hühnergülle auseinanderzusetzen haben, werden damit Hilfsmittel zur Überprüfung der Leistungsfähigkeit vorhandener Fördermittel und zur Auslegung zukünftig zu entwickelnder Fördermittel in die Hand gegeben.

Literatur

- Schemel, H.; Hörnig, G.: Zur Fließgrenze von Gülle und ihrer Bestimmung. agrartechnik, Berlin 26 (1976) 7, 327–330.
- [2] Boese, E.: Untersuchungen zur Beschreibung des thixotropen Verhaltens der Gülle und ihre Anwendung auf die Berechnung technischer Prozesse. Wilhelm-Pieck-Universität Rostock, Dissertation 1977.
- [3] Hörnig, G.: Druckverlusttabelle für das Fördern von Rinder- und Schweinegülle in Druckrohrleitungen. Institut für Mechanisierung Potsdam-Bornim, Institutsbericht Nr. 24, 1971.

A 3993

Fließverhalten von Hühnergülle

Dr.-Ing. M. Türk, KDT, Forschungszentrum für Mechanisierung der Landwirtschaft Schlieben/Bornim der AdL der DDR

Verwendete Formelzeichen

В	-	Bestimmtheitsmaß
d	m	Rohrinnendurchmesser
g	m²/s	Erdbeschleunigung
hv	∞m/m	spezifische Druckverlusthöhe
k	Pa · s ⁿ	Konsistenzkoeffizient
	m	Förderlänge
n	-	Fließexponent
Δр	. Pa/m	spezifischer Druckverlust
Δ		
Ra	m	Außenradius
Ri	m	Inneradius
Re	-	Reynoldszahl
M	S	Belastungszeit
TS	%	Trockensubstanzgehalt, Konzentra-
		tion
Ý	m³/h	Volumendurchsatz
v	m/s	Strömungsgeschwindigkeit
ατ	-	Temperaturzahl
Ý	s ⁻¹	Schergeschwindigkeit
Ϋ́N	s - '	Newtonsche Schergeschwindigkeit
E	-	Radienverhältnis
Лы	Pa·s	plastische Viskosität
Ns	Pa · s	Scheinviskosität
9	°C	Temperatur der Gülle
A	-	Rohrreibungszahl
5	kg/m³	Dichte
r	Pa	Schubspannung
rw	Pa	Schubspannung an der Rohrwand
r _o	Pa	Fließgrenze
1	S	Winkelgeschwindigkeit

1. Problemstellung

Der hydromechanische Gülletransport hat in den Produktionsrichtungen der Hühnerintensivhaltung nicht die schwerpunktmäßige Bedeutung wie in der Rinder- und Schweineproduktion. Hühnerkot mit TS von rd. 25 % ist nicht pumpfähig und wird i. allg. mechanisch gefördert. Teilweise ist aber aus technologischen Gründen auch Wasserzusatz erforderlich und es können zur Förderung Dickstoffpumpen und Rohrleitungen eingesetzt werden [1].

Das Fließ- und Förderverhalten von konzentrierter Hühnergülle (TS > 10%) wurde noch nicht systematisch untersucht. In der Literatur wurden lediglich Einzelversuche [2 bis 5] mit z. T. unvollständigen Angaben beschrieben. In früheren Untersuchungen [6] wurde die Fließgrenze τ_0 vernachlässigt, so daß diese Messungen nicht verallgemeinerungsfähig sind.

Die fehlenden Grundlagenkenntnisse zum Fließverhalten von trockensubstanzreicher Hühnergülle waren Anlaß zu orientierenden Untersuchungen im Forschungszentrum für Mechanisierung der Landwirtschaft Schlieben/Bornim, damit zur Projektierung Richtwerte des Fließverhaltens zur Verfügung gestellt werden können, die in späteren systematischen Versuchen zu präzisieren sind. Häufig wird bei der Bemessung von Förderanlagen der Gesamtdruck an der Pumpe in Abhängigkeit von Volumendurchsatz, Rohrdurchmesser und Förderlänge zu bestimmen sein. Einen Hauptanteil hat der Reibungsdruckverlust in geraden Rohren, der bei Laminarströmung direkt aus der Fließfunktion $\tau(\dot{y})$ ermittelt werden kann. Die Aufgabe der rheologischen Untersuchungen besteht demnach in der experimentellen Bestimmung von Fließkurven in einem möglichst breiten Trockensubstanzbereich, der modellmäßigen Berechnung und der Verallgemeinerung durch Darstellung der Fließkennwerte in Abhängigkeit von der Güllekonzentration.

2. Kennzeichnung des Fließverhaltens

Trockensubstanzreiche Hühnergülle (TS > 9 %) hat ein zeitabhängiges nichtlinearplastisches (quasiplastisches) Fließverhalten, das mit dem Herschel-Bulkley-Potenzgesetz beschrieben werden kann:

$$\tau = \tau_0 + k \dot{\gamma}^n. \tag{1}$$

Bei TS < 9 % wird die Fließgrenze $\tau_0 = 0$. Es liegt pseudoplastisches (strukturviskoses) Fließverhalten vor, so daß das bekannte Ostwald-de Waele-Potenzgesetz anwendbar ist:

$$r = k\dot{y}^n$$
. (2)

Linearplastisches Fließverhalten der Gülle konnte im Gegensatz zu [2] nicht festgestellt werden und die Anwendung des Bingham-Gesetzes nach Gl. (1) stellt eine unzulässige Vereinfachung dar:

$$\tau = \tau_0 + \eta_{Pl} \dot{\gamma}. \tag{3}$$

Aus den Legehennen-Käfiganlagen des VEB Kombinat Industrielle Mast (KIM) Falkensee, Bezirk Potsdam, wurden mehrere Kotproben (TS $\leq 25,4$ %) gewonnen und nach stufenweiser Verdünnung auf TS = 6 ... 20 % mit Hilfe des Rotationsviskosimeters großer Spaltweite Fließkurven aufgenommen. Insgesamt wurden 40 Fließkurven ermittelt und ausgewertet. Aufgrund der vorhandenen Grobstoffe (Federn, Futterreste) waren Paral-

Bild 1. Fließkennwerte des Herschel-Bulkley-Potenzgesetzes von konzentrierter Hühnergülle (TS ≥ 9 %);

Ansatz: $\tau = \tau_0 + k\dot{\gamma}^n$, $\vartheta = 20$ °C, Meßgerät Rotationsviskosimeter • großer Spaltweite

Bild 2. Fließverhalten von konzentrierter Hühnergülle

(7)

(8)

(9)

lelmessungen mit dem Rheotest RV 2 nur im Einzelfall möglich. Die Bestimmung der Fließgrenze τ_0 erfolgte nach der Methodik des Entspannungsversuchs und nachfolgender rechnerischer Präzisierung.

Die Gewinnung absoluter Fließkurven bei Anwendung von GI. (1) erfolgte auf der Grundlage eines Korrekturverfahrens von Eckstädt (7) mit einer EDV-Anlage. Für pseudoplastische Medien nach GI. (2) vereinfacht sich die Korrektur der Schergeschwindigkeit wesentlich [8]:

$$\frac{\dot{\gamma}}{\dot{\gamma}_N} = \frac{1-\epsilon^2}{n\left(1-\epsilon^{2/n}\right)} \quad . \tag{4}$$

Dabei ergibt sich für

$$\varepsilon = \frac{Ri}{Ra}$$

und

$$\dot{\gamma}_{N} = \frac{2 \Omega}{1 - \varepsilon^{2}} . \tag{6}$$

Die berechneten Fließkennwerte $\tau_0,\ k$ und n der Gl. (1) wurden mit dem TS-Gehalt in Beziehung gesetzt und folgende Regressions-

gleichungen zur Verallgemeinerung im Bereich 9 % \leq TS \leq 20 % erhalten (Bild 1):

$$\tau_0$$
 (TS) = 0,03061 exp (0,4107 TS),
B = 0,9288
k (TS) = 0,001312 exp (0,5612 TS),
B = 0,9249
n (TS) = 1,6543 exp (-0,0753 TS),
B = 0,6815.

Für den Bereich 5 % \leq TS < 9 % ist $\tau_0 = 0$ und es werden folgende Regressionsgleichungen zur Bestimmung der Fließkennwerte nach GI (2) vorgeschlagen:

Mit Hilfe der Gln. (7) bis (1.1) können für den Konzentrationsbereich 5 % ≤ TS ≤ 20 % alle Fließkennwerte der Fließgesetze der Gln. (1) und (2) berechnet (Tafel 1) und die absoluten Fließkurven in Abhängigkeit vom TS-Gehalt dargestellt werden (Bilder 2 und 3). Diese Angaben beziehen sich grundsätzlich auf die Normtemperatur θ = 20 °C. Zur Temperaturkorrektur der Fließkennwerte wird das Verfahren des Relativvergleichs mit Hilfe der Temperaturzahl α_τ vorgeschlagen [9]:

$$\alpha_{\tau} = \frac{\tau (\vartheta)}{\tau (20 \ ^{\circ}\text{C})} \quad . \tag{12}$$

Für trockensubstanzreiche Hühnergülle wurden noch keine systematischen Untersu-

Tafel 1. Zusammenstellung der berechneten Fließkennwerte von Hühnergülle $\vartheta = 20 \,^{\circ}\text{C}, t_{M} = 1\,800 \,\text{s}$)

TS %	τ _ο Pa	k Pa ·s^	n	Fließgesetz
5	0	0,2671	0,5365	Ostwald-
6	0	0,3629	0,5118	de Waele
7	0	0,4930	0,4882	$\tau = k \dot{\gamma}^{n}$
8	0	0,6698	0,4657	-
9	1,23	0,2049	0,8397	Herschel-
10	1,86	0,3592	0,7788	Bulkley
11	2,80	0,6196	0,7223	$\tau = \tau_0 + k \dot{\gamma}^n$
12	4,23	1,1036	0,6699	
13	6,37	1,9345	0,6213	
14	9,61	3,3908	0,5762	
15	14,49	5,9436	0,5344	
16	21,85	10,4181	0,4956	
17	32,95	18,2611	0,4596	
18	49,68	32,0088	0,4263	
19	. 74,91	56,1060	0,3953	
20	112,95	98,3446	0,3667	
21	170,32	172,3817	0,3401	
22	256,81	302,1566	0,3154	

chungen zur Temperaturabhängigkeit durchgeführt. Bekannte Einzelversuche [3] zeigen, daß der im Bild 4 gekennzeichnete Bereich für α_{T} zutrifft. Für konzentrierte Gülle (TS > 10%) sollte die α_{T} -Kurve von Schweinegülle Anwendung finden. Mit Gl. (12) ergibt sich demnach folgende Korrekturvorschrift: ~

Die Fließkennwerte τ_0 (20 °C) und k (20 °C) erhält man aus Gl. (8) oder Gl. (10) und α_{T} (9) aus Bild 4. Der Fließexponent n kann in erster Näherung als temperaturunabhängig angenommen werden [9]. Auf diese Weise ist es möglich, auch extreme Betriebszustände (0 °C < ϑ < 30 °C) zu berücksichtigen. Der Vergleich mit den Förderversuchen nach [2, 3, 4] ergibt unter Berücksichtigung des biologischen Schwankungsbereichs weitgehende Übereinstimmung.

3. Berechnung des Druckverlustes

Trockensubstanzreiche Gülle wird zumeist im laminaren Strömungsbereich gefördert, dessen Grenze mit Hilfe der verallgemeinerten Reynoldszahl

$$Re = \frac{v \, d \, \rho}{\eta_S \left(\tau_W \right)} \tag{14}$$

analog zu Newtonschen reinviskosen Flüssigkeiten mit Re_{krit} = 2 300 bestimmt werden kann. Die sog. Scheinviskosität der Rohrströmung ist dabei wie folgt definiert:

$$\eta_S(\tau_W) = \frac{\tau_W}{\dot{\gamma}_N} = \frac{\tau_W d}{8 v} .$$
(15)

Für τ_{w} ist GI. (1) oder (2) einzusetzen. Es zeigt sich, daß die Scheinviskosität keine konstante Größe wie bei Newtonschen Flüssigkeiten darstellt, sondern sich mit $\dot{\gamma}_{N}$ verändert.

Bei Laminarströmung gilt das Widerstandsgesetz

$$\lambda = \frac{64}{\text{Re}}$$
(16)

und bei Turbulenz (Re > 2 300) in erster Näherung das bekannte Prandtl-Gesetz für hydraulisch glattes Rohr

$$\lambda = \frac{0,308642}{\left[\lg \left(\frac{\text{Re}}{7} \right)^2 \right]} \,. \tag{17}$$

Mit Hilfe der Darcy-Weißbach-Gleichung kann der Druckverlust errechnet werden:

Bild 4. Temperaturkorrektur des Fließverhaltens; a Wasser, b Schweinegülle

$$\frac{\Delta p}{\Delta l} = \lambda \frac{\rho v^2}{2 d} , \qquad (18)$$

$$h_{\nu} = \lambda \, \frac{\nu^2}{2 \, d \, g} \, . \tag{19}$$

Bei Anwendung des dreiparametrigen Fließgesetzes nach Gl. (1) ist der exakte Druckverlust im Laminarbereich iterativ zu berechnen [9]. Dazu liegen im Forschungszentrum entsprechende Rechnerprogramme vor. Eine Näherungslösung kann angegeben werden:

Bild 5. Druckverluste beim Fördern von trockensubstanzreicher Hühnergülle

$$\frac{\Delta p}{\Delta l} = \frac{16}{\pi d} \left[\tau_0 + k \left(\frac{2 \pi v}{d} \right)^n \right].$$
(20)

Auf dieser Grundlage wurden in einem Berechnungsbeispiel die Druckverlust-Durchsatz-Abhängigkeiten ermittelt und im Bild 5 dargestellt.

4. Zusammenfassung

In der Literatur gibt es kaum Hinweise zum Fließ- und Förderverhalten von konzentrierter Hühnergülle. Deshalb wurden im Forschungszentrum für Mechanisierung der Landwirtschaft Schlieben/Bornim orientierende rheologische Untersuchungen durchgeführt, um für die Projektierungspraxis im Bereich $5\% \leq TS \leq 20\%$ Richtwerte des Fließverhaltens von Legehennengülle ableiten zu können. Für das Herschel-Bulkleyund das Ostwald-de Waele-Fließgesetz werden die relevanten Fließkennwerte in Abhängigkeit vom TS-Gehalt dargestellt und Hinweise zur Temperaturkorrektur gegeben. Die Berechnung des Druckverlustes wird allgemein und an einem Beispiel gezeigt.

Literatur

- Peschel, E.; Schmidt, F.: Transport der Exkremente aus industriemäßig produzierenden Anlagen der Legehennenhaltung. Dt. Agrartechnik, Berlin 22 (1972) 10; S. 462–464.
- [2] Ramacsay, L.: Meßverfahren der dynamischen Viskosität von Geflügelgülle. Zemědělská Technika, Praha 19 (1973) 6, S. 327–335.
- [3] Chen, Y. R.; Hashimoto, A. G.: Rheologische Eigenschaften von belüfteter Geflügelgülle. Transactions of the ASAE, St. Joseph, Mich., 19 (1976) 1, S. 128–133.
- [4] Rolfes, M. J.; Gilbertson, C. B.; Nienaber, J. A.: Druckverluste beim Fördern von Rindergülle durch PVC-Rohrleitungen. Transactions of the ASAE, St. Joseph, Mich., 20 (1977) 3, S. 530–533.
- [5] Zacharda, F.: Abhängigkeit des Druckverlustes von der Feuchtigkeit der Gülle bei der Rohrförderung. Zemědělská Technika, Praha 21 (1975) 6, S. 363–367.
- [6] Bölke, M.; Hörnig, G.; Boese, E.: Untersuchung und Stellungnahme zur hydromechanischen Entmistungstechnologie von Hühnerkot, des Kottransportes durch eine Güllepipeline und der kontinuierlichen Beschickung der Hühnerkot-Trocknungsanlage. Institut für Mechanisierung Potsdam-Bornim, Gutachten 1969 (unveröffentlicht).
- [7] Eckstädt, H.: Beitrag zur Bemessung von Rohrleitungen für die Förderung von Gülle unter Berücksichtigung der Sedimentation. Wilhelm-Pieck-Universität Rostock, Dissertation A 1978.
- [8] Reher, E.-O.; Pfannschmidt, P.: Mechanische Verfahrenstechnik. TH f
 ür Chemie Leuna-Merseburg, 1. Lehrbrief Nr. F63/1.
- [9] Türk, M.: Bemessungsgrundlagen für das Fördern von trockensubstanzreicher Schweinegülle in Rohrleitungen. FZM Schlieben/Bornim, Forschungsbericht 1983 (unveröffentlicht).

A 4023

Folgende Fachzeitschriften des Maschinenbaus erscheinen im VEB Verlag Technik:

agrartechnik; Feingerätetechnik; Fertigungstechnik und Betrieb; Hebezeuge und Fördermittel; Kraftfahrzeugtechnik; Luft- und Kältetechnik; Maschinenbautechnik; Metallverarbeitung; Schmierungstechnik; Schweißtechnik; Seewirtschaft