Ökonomisch vertretbare Höhe von Investitionen in der Milchproduktion und der Schweinemast

Mit der Einführung industriemäßiger Produktionsverfahren und der damit verbundenen Errichtung großer Aulagen der Tierproduktion in den letzten Jahren war eine wesentliche Senkung des Aufwandes an lebendiger Arbeit verbunden. Die fortschreitende Anwendung von Grundsätzen der industriellen Produktion bei der Gestaltung von Produktionsprozessen sowie die automatisierungsgerechte Mechanisierung oder die teilweise Automatisierung ganzer Produktionsabschnitte der Tierproduktion veränderte die Struktur der Investitionen, indem die bauseitig bedingten prozentualen Anteile der Investitionen zugunsten der Anteile für die Ausrüstung für Mechanisierung und Automatisierung der verschiedenen Produktionsabschnitte (z. B. maschinelle Milchgewinnung) und für optimale Gestaltung der Umweltbedingungen (z. B. Be- und Entlüftung) zurückgingen. Diese Entwicklung führte jedoch nicht nur zu Änderungen der relativen Werte für die Positionen Bau und Ausrüstung, sondern ließ die Investitionen je Kapazitätseinheit und damit den Aufwand an vergegenständlichter Arbeit stetig ansteigen.

Berechtigterweise wird daher die Frage nach der ökonomisch vertretbaren Höhe der Investitionen gestellt. Diese Frage kann nur beantwortet werden, wenn man die Investitionen als Teil des ökonomischen Teilsystems der Tierproduktion betrachtet. Zu diesem gehören weiterhin einerseits der Aufwand an lebendiger Arbeit und an Produktionsmitteln (z. B. Futtermittel) und der zur erweiterten Reproduktion erforderliche Gewinn (ausgedrückt als Rückflußdauer der Investition) sowie andererseits die Leistungen der Tierbestände und die dafür erzielten Erlöse. Außerdem üben neben der Struktur der Investition noch die Nutzungsdauer und der Instandhaltungsaufwand von Bau und Ausrüstung einen Einfluß aus. Dabei muß gewährleistet werden, daß die Produktion einen Stand aufweist oder in absehbarer Zeit erreicht, der neben den laufenden Kosten einen ansprechenden Gewinn bzw. eine vertretbare Rückflußdauer sichert.

Zu diesem Komplex wurden in den Jahren 1968 und 1969 im Institut für Mechanisierung der Landwirtschaft Potsdam-Bornim der DAL Untersuchungen durchgeführt mit dem Ziel, die mögliche Höhe der Investitionen für einige wescntliche Zweige der Tierproduktion in Abhängigkeit von den oben genannten Bestandteilen des ökonomischen Teilsystems zu ermitteln. Über die dabei angewandte Methode hat HUBNER /1/ berichtet.

Zunächst werden die leistungs- und preisabhängigen Einnahmen eines Jahres je Tierplatz ermittelt. Von diesen werden die Kosten für Futter und Tiereinsatz, lebendige Arbeit und sonstige direkte und Gemeinkosten abgesetzt. Der Differenzbetrag steht dann zur Sicherstellung einer angemessenen Rückslußdauer und der Kosten der vergegenständlichten Arbeit zur Verfügung. Diese Betrachtungsweise trägt dem Systemcharakter des gesamten Problems Rechnung, indem die mögliche Investitionshöhe als variabel und abhängig von den übrigen Faktoren betrachtet wird. In den genannten Untersuchungen wurden die Milchleistung in 6 Stufen zwischen 3 000 und 8 000 kg je Kuh und Jahr und die Milchpreise zwischen 60 und 75 M/dt1 in Sprüngen von 5 M variiert. Der Arbeitszeitbedarf wurde zwischen 120 und 24 AKh je Kuh und Jahr in 5 Stufen angesetzt, wobei die Vergütung 5 und 7 M/AKh betrug.

Die Kosten für Futter, Tiereinsatz und sonstiges wurden in Abhängigkeit von der Milchleistung nach Werten von WER-NER /2/ in M je dt Milch ausgedrückt. Der Ausrüstungsanteil der Investitionen ohne Silos kam mit 15, 25, 35, 50 und 100 Prozent in Ansatz. Weiter wurden die Nutzungsdauer der Bauten (40 und 33 Jahre) und der Ausrüstung (10 und 7 Jahre) sowie der jährliche Aufwand zur Instandhaltung (Bau: 1,5 und 1 Prozent, Ausrüstung: 10 und 14 Prozent vom Neuwert) variiert. Zur Sicherung des für die weitere Reproduktion erforderlichen Gewinns wurde die Rückflußdauer der Investitionen auf 10 und 15 Jahre angesetzt.

Ähnlich wurde bei den entsprechenden Berechnungen für die Investitionen der Schweinemast vorgegangen. Dabei wurde der Futteraufwand stärker variiert, um den möglichen Unterschieden hinsichtlich der verwendeten Futtermittel Rechnung zu tragen. Die Zumastergebnisse wurden zwischen 500 g und 900 g, die Preise zwischen 450 und 490 M/dt und die Rückflußdauer zwischen 2 und 4 Jahren variiert.

Nachstehend sollen die wichtigsten Ergebnisse hinsichtlich ökonomisch vertretbarer Höhe der Investitionen je Stallplatz in Anlagen der Milchproduktion und der Schweinemast zusammengefaßt werden. Dazu wurden die wichtigsten der für die Perspektive zu erwartenden Variations-Kombinationen aus der großen Anzahl der Diagramme ausgewählt, in denen die Ergebnisse in den genannten Untersuchungen dargestellt sind. Einige der ursprünglich variierten Faktoren wurden in den folgenden Tafeln nur mit jeweils einem Wert berücksichtigt, bei anderen entsielen die extremen Werte (z. B. 60 und 75 M je dt Milch, 15, 50 und 100 Prozent Ausrüstungsanteil; weniger als 1 AKh je dt Zumast).

Tafel 1 gibt die ökonomisch vertretbaren Investitionen in Mark je Kuhplatz in Abhängigkeit von den genannten Faktoren an. Zunächst ist ersichtlich, daß Milchleistungen von 4 000 kg je Kuh und Jahr nicht ausreichen, um neben den Kosten für Futter usw. die Kosten der Investitionen unter Gewährleistung einer angemessenen Rückflußdauer bei den heute bekannten Baupreisen abzudecken. Bei dieser Leistung betragen die vertretbaren Investitionen unter günstigsten Voraussetzungen hinsichtlich Arbeitszeitbedarf und crzieltem Milchpreis nur wenig über 5 000 M je Kuhplatz. Gleichzeitig wird die Bedeutung einer gesteigerten Milchleistung deutlich. So erhöht die Steigerung der Leistung von 4 000 auf 5 000 kg je Kuh und Jahr bei einem Jahresarbeitsmaß von 44 Kühen/AK (Tugesarbeitsmaß 66 Kühe/AK) die ökonomisch vertretbaren Investitionen von etwa 4000 auf etwa 6 000 M je Kuhplatz. Tafel 1 zeigt weiterhin, daß die Steigerung der Leistung sich wesentlich stärker auf den möglichen Investitionsaufwand auswirkt als die Erhöhung des Arbeitsmaßes. Während nämlich bei 5 000 kg je Kuh und Jahr, 70 M/dt, 25 Prozent Ausrüstungsmaterial und 10 Jahre Rückflußdauer bei einer Erhöhung des Arbeitsmaßes von 35 auf 44 Kühe die Investitionen von 5 400 auf 5 650 M je Kuhplatz ansteigen dürfen, erlaubt eine Steigerung der Leistung von 5 000 auf 6 000 kg bei gleichem Arbeitsmaß von 35 Kühen/Jahr (54 Kühe/Tag) eine Erhöhung von 5 400 auf 7 150 M je Kuhplatz.

In ähnlicher Weise wie die Steigerung der Leistung wirkt sich auch die Steigerung des durchschnittlichen realisierten Milchpreises aus, die der Betrieb z. B. durch Qualitätsverbesserung erzielen kann. Besonderes Interesse verdienen auch die Auswirkungen der Erhöhung des Ausrüstungsanteils an der Investition. Ausrüstungen haben eine geringere Nutzungsdauer und einen höheren Instandhaltungsaufwand, damit verursachen sie höhere laufende Kosten als Bauinvestitionen. Da der für die Abdeckung von Abschreibungen und Reparaturen verfügbare Betrag bei einer bestimmten Milchleistung konstant ist, müssen die Investitionen insgesamt geringer werden, wenn der Ausrüstungsanteil ansteigt, um den konstanten Betrag nicht zu überschreiten. Dieser Tatsache wird

^{*} VEB Landbauprojekt Polsdam (Direktor: Obering, K. SCHIRRHOLZ)

^{**} Institut f\u00fcr Mechanisierung der Landwirtschaft Potsdam-Bornim der DAL zu Berlin (Direktor: Obering, O. BOSTELMANN)

¹ Entwurf zur Grundsatzregelung wurde noch nicht berücksichtigt

Tafel 1 Ökonomisch gerechtfertigte Investitionen in der Milchproduktion in M je Kuhplatz
Festwerte: Kosten der lebendigen Arbeit: 5 M/AKh — Nutzungsdauer Bau: 40 Jahre, Ausrüstung: 7 Jahre
Instandhaltung Bau: 1,5 %, Ausrüstung: 14,3 % vom Neuwert jährlich, Zinsen 2,0 %, Versicherung 0,1 %

	94 - 22.5				60 — 35					48 - 4	4	24 — 88				
	65		70	70		55	Preise (Milch) 6	5	.70)		65	7	0
Milchleistung kg je Kuh und Jahr Futter und sonstige Kosten M je dt Milch	25	35	25	35	25	Ausrüs	tungsant	eil (% c	ler Gesa	amtinves	stition) 25	35	25	35	25	35
	10 15		10 15	10 15		Rückflı	18dauer (ler Inve		en (Jahr				10 15		
4000 42,35	2300 2000	1800	3350 2850	3000 2600	3200 2700	2950 2450	4250 3650	3800 3250	3500 3000	3150 2700	4550 3900	4100 3500	4150 3500	3700 3200	5200 4400	4050
5000 40,06	4150 3500	3200	5400 4650	4850 4200	5050 4250	4500 3850	6350 5400	5650 4850	5350 4600	4700 4100	6650 5650	5950 5150	6000 5100	5300 4600	7300 6200	5650
6000 38,44	5950 5050	4550	7500 6400	6650 5750	6850 5800	6150 5250	8400 7150	7450 6450	7150 6100	6350 5500	8700 7400	7750 6750	7850 6650	6950	9400 7950	7250
8000 37,58	9200 7750	7050	9550	9950 8650	10100 8600	9000 7750	12200 10400	10850 9400	10450 8850	9200 7950	12500 10600	11100 9650	11050 9350	9800 8450	13100	10100

dadurch entgegengewirkt, daß mit steigendem Ausrüstungsanteil auch das Arbeitsmaß ansteigt, z.B. bei 5 000 kg je Kuh und Jahr und 70 M/dt von 22,5 Kühe/AK bei 25 Prozent Ausrüstung (etwa 5 000 M je Kuhplatz) auf 35 Kühe/AK bei 35 Prozent Ausrüstung (etwa 5 300 M je Kuhplatz).

Jedoch wird die Steigerung des Arbeitsmaßes nicht immer groß genug sein, um durch Einsparungen an lebendiger Arbeit die gestiegenen Kosten des höheren Ausrüstungsgrades abzudecken, wie in Tafel 1 Vergleiche der Werte mit 25 Prozent Ausrüstung bei 35 Kühen mit denen mit 35 Prozent bei 44 Kühen sowie zwischen 44 und 88 Kühen/AK zeigen. Daraus ist abzuleiten, daß bei relativ geringem Arbeitsmaß die Erhöhung der laufenden Kosten durch verstärkte Mechanisierung durch die Senkung der Kosten der lebendigen Arbeit ausgeglichen wird. Ist das Arbeitsmaß jedoch bereits hoch, muß das Ziel weiterer Mechanisierungsmaßnahmen insbesondere in der Qualitätsverbesserung der Erzeugnisse

und der Leistungssteigerung gesehen werden. In diesem Zusammenhang sei auf die Verbesserung der Milchqualität durch Anwendung fortschrittlicher Verfahren zur Milchkühlung und beim Milchtransport oder auf die Verhütung von Eutererkrankungen durch Automatisierung des Melkprozesses hingewiesen. Solche Maßnahmen sind durchaus geeignet, hohe Investitionen ökonomisch zu rechtfertigen. Jedoch dürfte die Grenze für die Höhe der Investition je Kuhplatz bei Leistungen und Arbeitsproduktivität, die für den gegenwärtigen Stand als hoch bezeichnet werden können, über 7 500 M kaum hinausgehen.

In Tafel 2 werden die entsprechenden Werte für die Schweinemast ausgewiesen. Die Futterkosten werden in Abhängigkeit von den verwendeten Futtermitteln in Sprüngen von 30 M variiert, eine leistungsabhängige Unterteilung wie in Tafel 1 ist nicht erforderlich, da bei Einsatz gleicher Mengen hochwertiger Futtermittel, insbesondere von Eiweiß,

Tafel 2. Ökonomisch gerechtfertigte Investitionen in der Schweinemast (M je Mastplatz)

Festwerte: Kosten der lebendigen Arbeit: 5,— M/AKh — Tiereinsatz 6,50 M/kg (Erlös 450,— M je dt Schwein

Nutzungsdauer Bau: 40 Jahre, Ausrüstung: 7 Jahre; Instandhaltung Bau: 1,5 %, Ausrüstung: 14,3 % vom Neuwert jährlich)

Zunahme (g je Tier und Tag)	600						700							800					
Aufwand an lebendiger Arbeit (AKh je dt Zumast)	1			2		3		1		2		3		1		2		3	
Ausrüstungsanteil (% der Gesamt- investition)	35	50	35	50	35	50	35	50	35	50	35	50	35	50	35	50	35	50	
Futterart Futter- und sonstige Kosten M je Tpl. und Jahr	2 4	2 4	2 4	2 4	2 4	2 4	Rückf 2 4	lußdau 2 4	er der 1	Investit	ion (Ja	hre)	2 4	2 4	2 4	2 4	2 4	2 4	
Zuckerrüben- Rohsilage 320,— M	990 610	910 575	965 590	585 560	930 575	860 545	1265 775	1160 735	1235 750	1135 710	1205 740	1105 700	1540 945	1410 895	1505 925	1380 875	1475 905	1350 855	
350,— M	915 560	840 530	890 545	815 515	865 530	790 500	1190 730	1090 690	1160 710	1065 675	1130 695	1035 655	1465 900	1345 850	1430 880	1310 830	1400 860	1280 810	
Zuckerrüben- trockenschnitzel 380,— M	840 515	770 490	815 500	745 475	790 485	720 460	1115 685	1020 650	1085 665	995 630	1055 645	965	1390 855	1275 810	1355 830	1245 790	1320 810	1210 770	
1. Fertigfutter 2. Kartoffel- Rohsilage 410,— M	765 470	700 445	740 455	675 430	715 435	655 415	1040	955 605	1010 620	925 585	980	900 570	1315 805	1205 765	1280 785	1175 745	1245 765	1140 725	
Kartoffel- trockenschnitzel 440,— M	690 425	630 400	665 405	610 385	635 390	585 370	965 590	885 560	935 575	855 545	905 555	830 525	1240 760	1135 720	1205 740	1105 700	1170 720	1075 680	

Tageszunahmen von 600 g und von 800 g erreichbar sind, je nach Gestaltung der Lebensbedingungen und dem Erfolg züchterischer Maßnahmen /3/. Dementsprechend wurden die jährlichen Futter- und sonstigen Kosten auf einen Mastplatz bezogen, wobei geringe Werte naturgemäß hohe Investitionen zulassen. Bei Einsatz von Fertigfuttermischungen aus Kraftfutterwerken oder von Kartoffel-Rohsilage sind bei 600 g Tageszunahme und vierjähriger Nutzungsdauer Investitionen zwischen 700 und 750 M ökonomisch vertretbar. Dabei ist zu berücksichtigen, daß der höchste hier angesetzte Arbeitszeitbedarf von 3 AKh je dt Zumast nur 25 bis 30 Prozent des derzeitig durchschnittlichen Arbeitszeitbedarfs in der Schweinemast in der Landwirtschaft der DDR beträgt.

Die Steigerung der Leistung, d.h. die erhöhte Zunahme, wirkt sich auch in diesem Produktionszweig erheblich stärker aus als die weitere Senkung des ohnehin niedrigen Arbeitszeitbedarfs. Wenn dieser durch erhöhten Mechanisierungsgrad gesenkt wird, werden die freigestellten Kosten der lebendigen Arbeit durch die höheren Kosten der Ausrüstung voll in Anspruch genommen, so daß eine Erhöhung der Investitionssumme nicht möglich ist (600 g, 3 AKh, 35 Prozent, 4 Jahre, 410 M: 715 M Investitionsbetrag; 2 AKh, 50 Prozent: 675 M; 1 AKh, 50 Prozent: 700 M). Dagegen erhöht die Leistungssteigerung von 600 g auf 700 g täglicher Zunahme bei 3 AKh/dt und vierjährigem Rückfluß die vertretbaren Investitionen von etwa 700 auf etwa 1 000 M bzw.

ermöglicht einen schnelleren Rückfluß der Mittel (etwa drei Jahre).

Von ähnlicher Bedeutung wie bei der Milchproduktion sind auch in der Schweinemast höhere Preise durch Erzeugung hoher Qualitätsstufen. Auf die Wiedergabe der Werte wurde in Tafel 2 aus Raumgründen verzichtet, es kann überschlägig für 5 Prozent Preiserhöhung mit möglichen Investitionserhöhungen von 18 bis 20 Prozent gerechnet werden. Auch hier wird die Auswirkung der Produktion hochwertiger Erzeugnisse auf die ökonomisch gerechtfertigte Höhe der Fonds deutlich.

Zusammenfassend kann festgestellt werden, daß die Ergebnisse, die auszugsweise in den Tafeln 1 und 2 wiedergegeben werden, eine Grundlage bei der Vorbereitung von Investitionen in Abhängigkeit von den wichtigsten Produktionsbedingungen darstellen.

Literatur

- /1/ HUBNER, D.: Zur Ermittlung des möglichen Aufwandes an vergegenständlichter Arbeit für die tierische Produktion. Deutsche Agrartechnik 19 (1969) H. 6, S. 276 bis 278
- /2/ WERNER, K.: Hohe Leistungen je Tier aus ökonomischer Sicht. Tierzucht, Berlin 21 (1967) H. 5, S. 247 bis 253
- '/3/ WIESENMULLER, W.: Mdl. Mitteilungen. Sektion Tierproduktion der Universität Rostock, Institut für Tierernährung und landwirtschaftliche Chemic, 1969
 A 8196

Praktische Ergebnisse mit einer Vorrichtung zur automatischen Dosierung und Verabreichung von flüssigen Futterstoffen an Kälber

Staatl. gepr. Landw. K. JÄGER* Dipl.-Ing. H. SCHULZE* Dr. G. WEHOWSKY* Dipl.-Landw. D. KOHLSCHMIDT** Dipl.-Landw. G. WEIRAUCH***

In den Jahren 1968/69 wurde vom VEG Werchau, Mitarbeitern der Sektion Tierproduktion und Veterinärmedizin der Karl-Marx-Universität Leipzig sowie von einem Mitarbeiter des VEB Kombinat Impulsa, Betrieb 1 Elfa Elsterwerda, eine Kälbermastanlage für 1500 Tiere nebenberuflich entwickelt und mit errichtet.

Der Kälberstall, der für die Aufzucht sowie für die Mast geeignet ist, wurde für eine Halle von 120 m Länge und 21 m Breite projektiert. Bild 1 zeigt ein Funktionsschema des Kälbermaststalles. Der Stall (Bild 2) enthält 6 Aufstallungsreihen für je 250 Kälber. Sie werden in Sammelbuchten zu je 25 Tieren gehalten, jedoch ist auch prinzipiell eine Einzelbuchtenhaltung möglich. Die gesamte Standfläche ist mit Betonspaltenboden ausgelegt. Unter dem Betonspaltenboden befindet sich der als Stapelbehälter benutzte Kotbunker. Zwischen je 2 Aufstallungsreihen befindet sich eine Futterkette. Die Futtergangbreite beträgt außer den Krippen nur 40 cm. Der Stall wird mit Warmluftwerfern beheizt und mit Saug- sowie Drucklüftern ent- sowie belüftet. Das Stallklima ist hier, wie auch in vielen anderen Anlagen, noch nicht völlig zufriedenstellend.

Die Fütterung der Kälber erfolgt aus Eimern, die mit Scharnieren an einer endlosen, kalibrierten Kette angebracht sind. Die Kette läuft in einer U-Schiene, die Tränkeeimer in der Futterkrippe. Der Platzbedarf zwischen den Krippen beträgt 40 cm, er ist durch Kettenumlenkstellen bedingt. Am Ende des Stalles befindet sich die Kettenspannstelle, während im Futterhaus der Antrieb angeordnet ist (Bild 3 und 4). Die Eimerkette wird von einem 4-kW-Motor angetrieben und hat eine Umlaufzeit von 35 min. Ihre Gesamtlänge beträgt 240 m. An einer Kette sind 500 Eimer befestigt. Der Abstand der Eimer beträgt 40 cm und entspricht der Freßplatz-

breite bei Gruppenhaltung von Kälhern. Für Einzelbuchtenhaltung kann der Abstand geändert werden. Bild 5 zeigt eine Ansicht des Futterhauses mit der für eine Futterkette notwendigen Technik. Zum Tränken der Kälber kann Milch, mit Fremdfett angereicherte Magermilch oder auch aus Milchpulver hergestellte Tränke verwendet werden. Eine Aufbereitungsanlage für mit Fremdfett angereicherte Magermilch zeigt das Bild 6. Auf dem Bild sind der Fetterhitzer, der Mixer sowie der Stapelbehälter für die fertige Tränke zu sehen. Der Stapelbehälter besitzt eine automatisch einstellbare Heizung.

Die Tränke wird automatisch in die Eimer dosiert. Die Dosiermenge ist einstellbar von 1 bis 5,5 kg bei einer Abstufung von 0,5 kg, wobei die Dosiergenauigkeit etwa 200 g beträgt. Im Bild 7 ist die Dosiervorrichtung zu sehen.

Mit Hilfe einer Lichtschranke wird signalisiert, wenn ein Tränkeeimer in den Füllbereich der Dosieranlage einfährt. In diesem Moment beginnt automatisch das Befüllen des Eimers. Die Füllventile sind geöffnet. Nach einer eingestellten Zeit werden diese Ventile geschlossen. Durch Kombination mehrerer Ventile mit unterschiedlichen Durchflußdrosseln sowie Einstellung der Üffnungszeiten der Ventile werden die Dosiermengen im Bereich von 1 bis 5,5 kg vorgewählt. Der zwischen den Tränkeeimern befindliche Freiraum setzt den lichtschrankengesteuerten Dosiermechanismus außer Betrieb und aktiviert ihn gleichzeitig für den Befüllvorgang des nächsten Eimers. Die Dosiermenge ist für 2 Buchten (≤ 50 Kälber) einstellbar, das bedeutet, ein Wechsel in der Tränke-

Sektion Tierproduktion und Veterinärmedizin der Karl-Marx-Universität Leipzig

^{**} VEB Kombinat Impulsa Elsterwerda

^{***} VEG Werchau